
WORKLOAD SCHEDULER 9.4 PERFORMANCE REPORT I MAY 2017

Workload Scheduler Version 9.5.0.2

Performance Report

an IBM + HCL product

Document version 1.0

Pier Fortunato Bottan
Giorgio Corsetti
Alessandro Tomasi
Workload Automation Performance Team - HCL Rome Lab

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

2

© Copyright 2020 HCL Technologies Ltd. HCL Technologies Ltd., and the HCL Technologies Ltd. logo

are trademarks of HCL Technologies Ltd., registered in many jurisdictions worldwide.

This edition applies to version 9, release 5, fix pack 2 of Workload Scheduler and to all subsequent releases

and modifications until otherwise indicated in new editions.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

3

CONTENTS

Contents ... 3

List of Figures .. 3

List of Tables .. 4

1 Introduction .. 6

1.1 What’s new since version 9.5 .. 6

2 Scope ... 6

2.1 Executive summary .. 7

3 Performance Test ... 7

3.1 Test Approach ... 7

3.2 Environment .. 7

3.3 Test tools ... 13

3.4 Test Benchmarks and Results ... 13
3.4.1 Scheduling Workload ... 13
3.4.2 Dynamic Workload Console Workload .. 20
3.4.3 Scheduling Workload for IBM Workload Scheduler on IBM Cloud Private 27

4 Best Practices ... 31

4.1 Scheduling ... 31
4.1.1 Scheduling using event rules: Event Processor Throughput ... 31
4.1.2 Scheduling using file dependencies .. 33
4.1.3 Scheduling using a start condition ... 34
4.1.4 Scheduling using conman sbs ... 34
4.1.5 Scheduling using “every” option .. 35

4.2 Dynamic domain manager table cleanup policy .. 35

5 Recommendations ... 37

5.1 CPU capacity ... 37

5.2 Storage ... 37

5.3 Memory .. 38

5.4 Tunings and settings .. 38
5.4.1 Data Source ... 39
5.4.2 Plan replication in the database (mirroring) ... 39
5.4.3 Oracle database configuration ... 40
5.4.4 Comprehensive configuration and tuning .. 40

6 Capacity Plan Examples .. 41

7 Notices .. 43

7.1 Trademarks .. 44
LIST OF FIGURES

Figure 1. Overall deploy view of test environment .. 8

Figure 2. Dynamic Workload Console node configuration .. 9

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

4

Figure 3. Master Domain Manager node configurations ..10

Figure 4. Database node configurations .. 11

Figure 5. Storage Solution ...12

Figure 6. Dynamic agent daily throughput. The total number of jobs scheduled in a day is
around 4.3 x10^5 ...15

Figure 7. Zoomed view of dynamic agent scheduling ..16

Figure 8. Dynamic agent schedule: ad hoc submission with 1000 scheduled jobs16

Figure 9. Dynamic agent schedule: jobs with internal and external conditional dependencies
(3200 total jobs) ...17

Figure 10. Dynamic agent schedule: jobs belonging to a critical path (Workload Service
Assurance) ..17

Figure 11. Fault tolerant agent schedule throughput in daily workload (10^5 jobs)18

Figure 12. Average job schedule delay over time ..18

Figure 13. Job plan status update delay over time ..19

Figure 14. Total average CPU utilization at master domain manager vs different workload 19

Figure 15. Monitor Job Scenario with retrieve of job log ..21

Figure 16. Plan View and job stream view ...21

Figure 17. Monitor event rule and triggers ...22

Figure 18. Create jobs and job streams ...23

Figure 19. Edit existing Job Stream ...23

Figure 20. Concurrent user income ...24

Figure 21. Pages per second attempted during workload ...25

Figure 22. First set of response time trend during increasing workload25

Figure 23. Second set of response time trend during increasing workload26

Figure 24. Third set of response time trend during increasing workload26

Figure 25. CPU utilization during DWC concurrent users test. The workload is distributed
over two DWC nodes ...27

Figure 26. Monitor Jobs scenario - average response time comparison between 9.5 FP2
and 9.5 FP1 ...27

Figure 27. yaml file example for persistent storage ...28

Figure 28. Dynamic agent daily throughput on ICP environment ...29

Figure 29. Average job schedule delay over time on ICP environment30

Figure 30. Job plan status update delay over time on ICP environment30

Figure 31. Number of actions triggered by the event processor ..32

Figure 32. Dynamic Domain Manger job submission throughput in the file creation event
rule scenario ..32

Figure 33. MDM CPU utilization comparison with and without event rule processing33

Figure 34. File dependency releases in a 1200 jobs/min workload as baseline34

Figure 35. Plan update delay while dynamic job table is being cleaned up35

Figure 36. Database Server disk busy while dynamic job table is being cleaned up36

Figure 37. Impact Dynamic Domain Manager throughput capabilities while dynamic job
table is being cleaned up ...36

Figure 38. Example of Job Stream that handles the cleanup of Dynamic Domain Manager
table entries ...37

Figure 39. IOzone benchmark output run with “-R -l 5 -u 5 -r 4k -s 100m –F file1 ...file5”
options ...38

LIST OF TABLES

https://hclo365.sharepoint.com/sites/workload_scheuler_pvt/Shared%20Documents/Performance%20Report/TWS_9.5.x/HCL_Software_WorkloadScheduler9.5.0.2_TechWhitePaper.docx#_Toc41576925
https://hclo365.sharepoint.com/sites/workload_scheuler_pvt/Shared%20Documents/Performance%20Report/TWS_9.5.x/HCL_Software_WorkloadScheduler9.5.0.2_TechWhitePaper.docx#_Toc41576925

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

5

Table 1. Software level of code ... 8
Table 2. Test tools. ...13
Table 3. Daily plan workload composition ..14
Table 4. Dynamic Worklaod Console secnarios with distributrion (%) and rates per user. ...20
Table 5. Event processor capacity in terms of maximum throughput (events per minute)
comparison ..31
Table 6. Dynamic Workload Console WebSphere Application Server heap configuration ...38
Table 7. Engine WebSphere Application Server heap configuration38
Table 8. Main configurations and tunings...41
Table 9. Capacity planning samples ..42

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

6

1 Introduction

Workload Scheduler is a state-of-the-art production workload manager, designed to help customers meet their
present and future data processing challenges. It enables systematic enterprise-wide workload processing for
both calendar and event-based (real-time) workloads across applications and platforms. Workload Scheduler
simplifies systems management across distributed environments by integrating systems management
functions. Workload Scheduler plans, automates, and controls the processing of your enterprise’s entire
production workload.

Pressures in today’s data processing environment make it increasingly difficult to guarantee a high level of
service to customers. Many installations find that their batch window is shrinking. More critical jobs must be
finished before the workload for the following morning begins. Conversely, requirements for the integrated
availability of online services during the traditional batch window put pressure on the resources available for
processing the production workload.

Workload Scheduler simplifies systems management across heterogeneous environments by integrating
systems management functions.

1.1 What’s new since version 9.5

In the last year and half, the major release 9.5 and two different fix packs have been released.

For more details about new features introduced with these fix packs, see the Summary of enhancements in

the online product documentation in IBM® Knowledge Center:
• 9.5 GA
• 9.5 FP1
• 9.5 FP2

This new major release 9.5 and related fix packs introduced several changes in the Workload Scheduler
infrastructure and functional capabilities. Some of these changes have been considered with special focus
during Performance Test phase because there was the need to understand how those changes might affect or
not the overall performance and scalability of the product, if compared with the previous releases.

In particular, the main focus areas from Performance Testing perspective have been:

• the replacement of IBM WebSphere® Application Server with IBM WebSphere Application
Server Liberty Base for Master Domain Manager, Backup Domain Manager and Dynamic
Workload Console

• the introduction of the <DATA_DIR> directory, where are located the product data and data
generated by IBM Workload Scheduler, such as logs and configuration information

• Dynamic Workload Console evolution based on new architectural foundation of modern front-
end technologies while maintaining previous workload logic and processes. With this
refurbishment, Dashboard Application Services Hub (DASH) is replaced by a lean, high-
performance in-house solution that is now based on a lightweight, highly composable, fast to
start, dynamic application server runtime environment, WebSphere Application Server Liberty

• the new capabilities to organize scheduling objects in a hierarchy of folders. This new capability
has been initially added for job and job streams only with 9.5 GA but the full support for all
scheduling objects has been extended with 9.5 FP2

• deployment of IBM Workload Scheduler on IBM® Cloud Private, an integrated environment for
managing containers that includes the container orchestrator Kubernetes, a private image
repository, a management console, and monitoring frameworks

2 Scope

https://www.ibm.com/support/knowledgecenter/SSGSPN_9.5.0/com.ibm.tivoli.itws.doc_9.5/common/src_gi/eqqg1twsenhance95.htm
https://www.ibm.com/support/knowledgecenter/SSGSPN_9.5.0/com.ibm.tivoli.itws.doc_9.5/common/src_gi/eqqg1twsenhance95fp1.htm
https://www.ibm.com/support/knowledgecenter/SSGSPN_9.5.0/com.ibm.tivoli.itws.doc_9.5/common/src_gi/eqqg1twsenhance95fp2.htm

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

7

2.1 Executive summary

The objective of the tests described in this document is to report the performance results for the new version of

the product, V9.5.0.2, executed in a test environment based on the VMWare ESX® - Linux x86 platform with
the new middleware dependencies in comparison with previous versions (see Workload Scheduler v9.4 Fix
Pack 3 performance report) .

The performance results could be summarized as follows:

• Consolidate previous performance achievements in terms of throughput

• Validate tunings for new middleware

• New key performance indicators for product deployment via containers

3 Performance Test

3.1 Test Approach

As specified in section 2.1, the main focus for Workload Scheduler 9.5 performance tests was to validate that
the new middleware, supporting the product, allows the same results in terms of throughputs and capacity with
respect previous releases; to achieve this the scheduling throughput, resource consumption and reliability are
continuously certified.

In this context, continuous monitoring was applied with special focus on key performance indicators (scheduling
and mirroring throughput, average delays, internal queues sizes) and on the main hardware resources (CPU,
memory, disk busy) to prevent memory leaks, unexpected hardware consumption and product performance
degradation during long run workload scenarios.

3.2 Environment

The test environment was based on virtual machines hosted on VMware ESXi servers running on Dell™
PowerEdge R630 Intel™ Xeon(R) CPU E5-2650 v4 @ 2.20GHz. All tests were performed in a 10 GB local area
network.

The following table summarizes the software used and the version:

OS
Linux Red Hat® server 7.7

Kernel 3.10.0-1062.1.1.el7

RDBMS
IBM DB2

v11.1.4.4 a

Oracle® 12c
Enterprise Edition

12.2.0.1.0

J2EE

WebSphere Application Server Liberty
Base 20.0.0.3

OpenJDK Runtime Environment
(1.8.0_232-b09)

LDAP IBM Directory Server 7.2

http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/products_platforms_workloadscheduler9.4.0.3_techwhitepaper.pdf
http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/products_platforms_workloadscheduler9.4.0.3_techwhitepaper.pdf

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

8

WA 9.5.0.2

Table 1. Software level of code

Figure 1. Overall deploy view of test environment

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

9

Figure 2. Dynamic Workload Console node configuration

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

10

Figure 3. Master Domain Manager node configurations

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

11

Figure 4. Database node configurations

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

12

Figure 5. Storage Solution

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

13

3.3 Test tools

The main tools used in this performance test context are listed in the following table.

Tool Scope Version Link

nmon Resource usage 16g
https://www.ibm.com/developerworks/aix/library/
au-nmon_analyser/index.html

IOzone Benchmark I/O capacity 3.434 www.iozone.org

Perfanalyst DB2 and WAS tuning 1.1.4
https://www.ibm.com/support/pages/ibm-
performance-analyst-tool

ROOT framework
Data analysis and
Presentation

6.0.8 https://root.cern.ch/

Rational Performance
Tester

Concurrent DWC users
test

9.5
https://www.ibm.com/us-en/marketplace/ibm-
rational-performance-tester

IBM Support Assistant
Java Core, Garbage
Collector and thread dump
analysis

5.0.2.8
https://www.ibm.com/support/home/product/C10
0515X13178X21/other_software/ibm_support_a
ssistant

netem
Network delays emulator of
wide area network

Kernel
3.10.0-

514
https://wiki.linuxfoundation.org/networking/netem

Table 2. Test tools

3.4 Test Benchmarks and Results

3.4.1 Scheduling Workload
This section reports the details of the workload included in the daily production plan deployed in the Performance
Test environments. The workload is distributed among fault tolerant and dynamic agents. The total number of
jobs that are executed daily is around 550000 jobs per day.

The scheduling objects (such as jobs, job steams, workstations and others used in the daily workload) have
been organized in a hierarchy of folders to validate that this new feature doesn’t determine any unexpected
performance impacts on product scheduling capabilities.

https://www.ibm.com/developerworks/aix/library/au-nmon_analyser/index.html
https://www.ibm.com/developerworks/aix/library/au-nmon_analyser/index.html
http://www.iozone.org/
https://www.ibm.com/support/pages/ibm-performance-analyst-tool
https://www.ibm.com/support/pages/ibm-performance-analyst-tool
https://root.cern.ch/
https://www.ibm.com/us-en/marketplace/ibm-rational-performance-tester
https://www.ibm.com/us-en/marketplace/ibm-rational-performance-tester
https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant
https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant
https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant
https://wiki.linuxfoundation.org/networking/netem

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

14

Table 3. Daily plan workload composition

This workload is used as a standard benchmark for establishing key performance indicators whose baseline is
continuously verified to track performance enhancements.

• Plan includes 124800 jobs scheduled in around 3 hours. In particular, there are 52000 jobs
scheduled to be executed during a 10-minute peak. In addition, only for dynamic agents, around
361000 jobs are scheduled in 5 hours (1200 jobs/min).

Standard FTA and Dynamic Agent schedule

•48 complex patterns, composed of multiple linked job streams (4) with 10 jobs each. 4 jobs for
each complex pattern are defined as critical jobs.

WSA - Critical path

•200 TWS-Objects rules - each rule matches a workstation and job name belonging to the daily
production plan mentioned above and the success state of job execution. The action, in case of
event matching, is to create a new message log. Normally, at the end of each test run, 4140
events (Message loggers) are generated.

• File-created rules -These event monitor rules generate a specific message logger each time a
new file with a predefined naming convention is created on each agent. In total, 240 events
(message loggers) were generated each hour, that means 1 event every 4 minutes on each of the
16 agents.

EDWA

• 5% of additional workload, an additional 3200 jobs/800 job streams over 4 dynamic agents and 4
FTAs . This means that there are 100 job streams for each agent, half of which have internal
dependencies and the other half has external dependencies. In the case of conditional
dependencies, there are also 800 join conditions overall.

Conditional Dependencies

•Dynamic submission of jobs using the command "conman sbs" to submit a job stream with 20
different jobs (5 per agent) with dependencies between them in a chain. In total, 1000 dynamic
jobs were submitted in 10 minutes.

Ad Hoc Submission (conman sbs)

•35000 job streams with a single job definition and a single file dependency defined at job stream
level, distributed across the 8 FTAs present in the test environment (4375 jobs per agent). These
35000 job streams have a time dependency that is different for each FTA: the single block of 4375
job streams per agent is scheduled to start one hour after the preceding one for a duration of 8
hours long.

File Dependencies

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

15

Figure 6. Dynamic agent daily throughput. The total number of jobs scheduled in a day is around 4.3
x10^5

The workload represented in Figure 6 is the daily load of dynamic agent scheduling. In particular, the jobs from
18:00 to 23:00 are standard schedules with “every” option. The workload from 14:30 to 17:10 has different
components as can be observed from the zoomed view of Figure 7.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

16

Figure 7. Zoomed view of dynamic agent scheduling

Figure 8. Dynamic agent schedule: ad hoc submission with 1000 scheduled jobs

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

17

Figure 9. Dynamic agent schedule: jobs with internal and external conditional dependencies (3200
total jobs)

Figure 10. Dynamic agent schedule: jobs belonging to a critical path (Workload Service Assurance)

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

18

Figure 11. Fault tolerant agent schedule throughput in daily workload (10^5 jobs)

The scheduling throughput represented in this section did not suffer any queuing phenomenon (incoming
and outgoing throughput are equivalent).

In fact, the throughput analysis reconfirms the performance and scalability levels assured in previous
releases. From the workload scheduler user perspective that means, for instance, no substantial delay in the
scheduling of a job when the same job is ready to start (see Figure 12) and no substantial latency in the job
and job stream status update from the Dynamic Workload Console (see Figure 13).

Figure 12. Average job schedule delay over time

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

19

Figure 13. Job plan status update delay over time

The above results evidence the promptness of Workload Scheduler in the case of an intensive workload
(2600 jobs/min both for dynamic and fault tolerant agents) with a dynamic scheduling delay of less than 1
minute. It is interesting to note how the average scheduling delay is around 4 seconds as expected from the
batchman process configuration (bm look, bm read settings). It must be remarked, once again, that these

results must be correlated with the test environment and the workload discussed in this context; nevertheless,
they could be considered as references while planning a Workload Scheduler deployment.

Figure 14 shows the CPU resource utilization trend on the MDM with respect to the outcoming throughput
for dynamic agent and fault tolerant agents scheduling as described in section 3.4.1. It is interesting to underline
how the MDM CPU footprint for 9.5.x is lower than 9.4.x. This means that the 9.5.x MDM spends less CPU than
9.4.x MDM to run the same workload over time.

Figure 14. Total average CPU utilization at master domain manager vs different workload

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000

%

job schedule throughput (jobs/min) (dynamic agents and FTAs)

Cpu utilization Comparrison between 9.4 and 9.5

9.4 MDM

9.5 MDM

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

20

3.4.2 Dynamic Workload Console Workload

The Dynamic Workload Console has been tested to probe the performance and scalability levels assured by
the new architecture for which Dashboard Application Services Hub (DASH) has been replaced by a lean, high-
performance in-house solution that is now based on a lightweight, highly composable, fast to start, dynamic
application server runtime environment, WebSphere Application Server Liberty.

In particular, the concurrent user tests have been executed using a topology with 2 DWC in clusters (see Figure
2 for details on single DWC node configuration) configured to use the same DWC database created on Oracle
12c Enterprise Edition 12.2.0.1.0 Server.

The workload has been designed to replicate scenarios and transaction rates applied in previous tests. Table
describes the scenarios and its weight in the overall payload including user percentage and single user
transaction rate.

Scenario Brief description User % Rate per user

(transaction/min)

Mon01_951jobs Query on job status (Figure 15)
40 0.5

Mon03_pv Open plan view and drill down in job
stream details (Figure 16) 10 0.5

Erule01_monitorER Select an event rule, view details and
monitor the triggering (Figure 17) 10 0.5

Mod01_CreateJ&JS Create 2 jobs and add then to a new
JS (Figure 18) 20 0.5

Mod02_EditJS Modify JS (Figure 19)
20 0.5

Table 4. Dynamic Workload Console scenarios with distribution (%) and rates per user

Figure 15-19 represent the details of each Dynamic Workload Console scenario, from login, transaction loop,
driven by specific rate, and logout. Multiple data pool sets have been used to achieve variation in the payload,
for example in the Mon_01_jobs scenario the plan queries vary filtering and producing different result set from
few to thousands of jobs.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

21

Figure 15. Monitor Job Scenario with retrieve of job log

Figure 16. Plan View and job stream view

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

22

Figure 17. Monitor event rule and triggers

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

23

Figure 18. Create jobs and job streams

Figure 19. Edit existing Job Stream

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

24

As said before, the tests have been performed with two Dynamic Workload Consoles pointing to a database for
clustering purpose. The workload balancing has been achieved by using the Rational Performance Tester
capability to uniformly distribute workload between the two nodes. Tests have been scheduled with increasing
payload in terms of concurrent users (Figure 20) with the specific rates and scenarios distribution (Table 4).

The test with 300 users generates an overall concurrency in the steady state of around:

19 pages/seconds

Figure 20. Concurrent user income

Results show a linear relationship for incoming throughput (concurrent users) and outgoing throughput (page
requests fulfilled per second) as illustrated in Figure 21. Linearity has been also confirmed in resource usage.

The pages response time shown in Figure 22, Figure 23 and Figure 24 below are related to the time spent on
the DWC Servers to reply to the Rational Performance Tester calls and it doesn’t include the time spent on the
browser to process and show data. Moreover, these results have been obtained in a situation for which no
significant scheduling workload was running on the back end (Master Domain Manager, Domain Manager and
Dynamic Domain Manager). If significant scheduling workload is running, the average pages response time
would be worst considering the extra CPU-intensive work running on both the Master Domain Manager and
Database machines.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

25

Figure 21. Pages per second attempted during workload

Figure 22. First set of response time trend during increasing workload

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

26

Figure 23. Second set of response time trend during increasing workload

Figure 24. Third set of response time trend during increasing workload

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

27

Figure 25. CPU utilization during DWC concurrent users test. The workload is distributed over two
DWC nodes

The above results show an equivalent behavior in terms of throughput and resource utilization behavior with
respect previous releases based on Dash technologies. Moreover, it confirms how the CPU usage is linear
within the increasing number of concurrent users on all the main topological nodes.

It is also interesting to highlight how some performance improvements have been added in the Workload
Scheduler 9.5 FP2 if compared with 9.5 GA and 9.5 FP1 versions, especially for the average response time of
the pages related to the Mon01_951jobs scenario (Monitor Job Scenario with retrieve of job log).

Figure 26. Monitor Jobs scenario - average response time comparison between 9.5 FP2 and 9.5 FP1

where the blue bars are related to the 9.5 FP2 run while the light blue bars are related to the 9.5 FP1.

3.4.3 Scheduling Workload for IBM Workload Scheduler on IBM Cloud Private
Starting from 9.5 version, the deployment of Workload Scheduler is available also for IBM Cloud Private.

IBM Cloud Private provides an integrated environment for managing containers that includes the container
orchestrator Kubernetes, a private image repository, a management console, and monitoring frameworks. With

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

28

IBM Cloud Private, it is possible to deploy the IBM Workload Scheduler components as Helm charts to quickly
configure and run them as Docker container applications in a Kubernetes cluster. Moreover, it is possible to
manage the IBM Workload Scheduler components from the IBM Cloud Private dashboard or from the command-
line interface. For further details about the IBM Cloud Private solution refer to online documentation.

The main scope of the current section is to document which are the overall scheduling performance of an IBM
Workload Scheduler installation on IBM Cloud Private solution in a configuration with persistent storage defined
on NFS Server solution.

The IBM Cloud Private environment and topology used for the performance scheduling test is described in the
table below:

ICP Role OS CPU RAM HDD

Master Node

Ubuntu 18.04.1 LTS

8 32 GB 500 GB

Proxy Node 2 16 GB 500 GB

Worker Node 1 6 32 GB 500 GB

Worker Node 2 6 32 GB 500 GB

Table 5. IBM Cloud Private topology used to host IBM Workload Scheduler

Also in this case, all tests described in this section were executed on VMs with virtual CPUs and RAM assigned
exclusively (reserved resources) and the database used for both the Master Domain Manager and the Dynamic
Workload Console components was DB2 v11.1.4.4a installed on a dedicated VM with 8 vCPUs and 32GB RAM.

As persistent volumes for all the product components (Master Domain Manager, Dynamic Workload Console
and Dynamic Agent) the NFS Server solution has been used. To avoid issues during the daily activity, it is highly
suggested:

• to configure the persistent volume to use the version 3 of the NFS server

• to set the local lock parameter to all

• to assure to have a limited network latency between the NFS Server and the IBM Cloud Private
components (in the test environment used, the average network latency between the Worker Nodes
and the NFS Server was less than 0.3 ms The considerations done about the network latency impacts
in a workload scheduler environment with a heavy workload available in the section 3.4.4 of Workload
Scheduler v9.4 Fix Pack 3 performance report are applicable to 9.5.x version too.

The following is an example of .yaml file that shows how the persistent volumes have been configured in this
environment:

Figure 27. yaml file example for persistent storage

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.1/kc_welcome_containers.html
http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/products_platforms_workloadscheduler9.4.0.3_techwhitepaper.pdf
http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/products_platforms_workloadscheduler9.4.0.3_techwhitepaper.pdf

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

29

In this configuration, a daily plan of around 46000 jobs distributed among tens of dynamic agents was executed.
Note that fault-tolerate agents are not supported by Workload Scheduler installed on IBM Cloud Private.

Figure 28. Dynamic agent daily throughput on ICP environment

The workload represented in Figure 28. Dynamic agent daily throughput on ICP environment is the daily
load of dynamic agent scheduling. In particular, the jobs from 18:00 to 23:00 are standard schedules with “every”
option.

The scheduling throughput represented in this section did not suffer any queuing phenomenon (incoming
and outgoing throughput are equivalent).

From the workload scheduler user perspective that means, again, no substantial delay in the scheduling
of a job when the same job is ready to start (see Figure 29. Average job schedule delay over time on ICP
environment) and no substantial latency in the job and job stream status update from the Dynamic Workload
Console (see Figure 30. Job plan status update delay over time on ICP environment), except for a sporadic
unexpected peak.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

30

Figure 29. Average job schedule delay over time on ICP environment

Figure 30. Job plan status update delay over time on ICP environment

The above results evidence the promptness of Workload Scheduler installed on ICP in the case of a workload
with a peak of around 200 jobs/min with a dynamic scheduling delay of less than 1 minute.

It is interesting to highlight that the dynamic scheduling delay and job plan status update delay start to grow if
the incoming workload is increased, especially during the job submission peak. This behavior depends on the
fact that the Master Domain Manager DATA_DIR (where the Workload Scheduler queues and Symphony file

reside) is located in the persistent volume, that is a network-based file system. In this specific configuration, the
network bandwidth and the network latency play a key role in limiting the product throughput capabilities if
compared with an on-prem installation for which the Master Domain Manager DATA_DIR is typically defined

on a local attached disk.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

31

4 Best Practices

4.1 Scheduling

Workload Scheduler software offers many features to perform at best its own objective: orchestrate
scheduling flow activities. The principal way to schedule is to have job streams included in the plan, by
associating it to a run cycle, during the plan generation activity. In addition, the schedule of jobs and job streams
could occur dynamically while the plan is running, using, for example, event rules, conman, start conditions,
and file dependencies. Even if the latter give a higher level of versatility to accomplish different business
scenarios, there are some recommendations that must be considered before planning to adopt them to
orchestrate the scheduler completely in case of a heavy workload.

4.1.1 Scheduling using event rules: Event Processor Throughput

It is possible to have rules that trigger actions like job and job stream submission. These rules could
detect, for example, a job status change or file creation events. In all of these cases, the events are sent to the
event processor queue (cache.dat). In the case of a status change, the consumer is the batchman process,

while in the case of remote file monitoring, the agent itself communicates with the event processor. In all of
these cases, the final submission throughput strictly depends on event processor throughput capability.

The event processor is a single thread process and its processing capacity is proportional to the core
speed and the I/O. For this reason, it cannot scale.

The benchmark was based on 6000 file creation rules, defined for 4 dynamic agents with more than
1.2x10^5 files created in one hour. The file creation rate was increased during the test to saturate the event
processor capacity. It is meaningful to compare the event processor capacity in two different architectures (Table
6).

Environment architecture Events per minute

Power7 AIX env 70

VMWare Linux env 390

Table 6. Event processor capacity in terms of maximum throughput (events per minute) comparison

The test was executed during a 240 x 2 jobs/min schedule for dynamic agents and fault tolerant agents.
Figure 31 shows the number of actions that the event processors was able to trigger and, in this case, they are
mapped (one to one) to job submission (see Figure 32). The focus of this section was to demonstrate the event
processor throughput stressed with the file creation rule. It was evaluated that the type of rule does not impact
the throughput. There is a specific scenario, status change event rules, whose throughput is constrained by the
total number of event rules (see IBM Workload Scheduler 9.3.0.1 Capacity Planning Guide) causing enqueuing
on the monbox.

http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/ibmworkloadscheduler9.3.0.1_capacityplanningguide.pdf

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

32

Figure 31. Number of actions triggered by the event processor

Figure 32. Dynamic Domain Manger job submission throughput in the file creation event rule scenario

While planning this kind of solution, not only the event processor capacity must be considered but also
its additional resource utilization in terms of CPU.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

33

Figure 33. MDM CPU utilization comparison with and without event rule processing

It could be noted that to obtain the same throughput there is an additional CPU consumption of about
30% on the master domain machine.

4.1.2 Scheduling using file dependencies

Workload Scheduler allows the release of dependencies to perform scheduling. These releases could
depend on several objects (jobs, job streams, resources), file dependency is often a useful feature to implement
many business workflows that must be triggered by a file creation. The workload described in 3.4.1 already
includes a component of this type acted against fault tolerant agents. This feature has a different impact on the
performance if used with a dynamic agent. In case of a dynamic agent, the entire mechanism is driven by the
dynamic domain manager that is in charge of the continuous check on the file existence status. The polling
period is driven by the localopts property present on the Dynamic Domain Manager:

bm check file = 300 (120 seconds is the default).

It defines the frequency with which the dynamic agent is contacted by server about file status. The server
workload throughput is ruled by three parameters:

1. Polling period.

2. Number of file dependencies.

3. Network connection between agents and server.

4. Background Scheduling activities.

In the test environment, (with around network latency 0.1 ms), the file check throughput was strongly
dependent on the scheduling workload. In this context the period between two files checks (in the total file
dependencies list) passes from few hundredths of second (during no scheduling activity) a to tenth of second
(during peak time) increasing the time to slide all the file dependencies every T (bm check file)

In a context like the actual one, it is suggested to tune the T (bm check file) with the following

restriction:

T >
N

10

being N the total number of file dependencies.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

34

This scenario was applied to 2000 jobs scheduled with 2000 different file dependencies, for which
T = bm check file = 300, as shown in the example above. File dependency release was triggered in

three blocks of 400, 800 and 800 files when the system was charged with 1200 jobs/min job submission (see
Figure 34).

Figure 34. File dependency releases in a 1200 jobs/min workload as baseline

4.1.3 Scheduling using a start condition

It is also possible to schedule jobs using file detection as a trigger handled a by job mechanism. This is
known as the Start Condition feature: a job called continues to run until a file match is detected.

The capacity of this job stream submission is strictly related to the global schedule capacity. The
advantages include leveraging of job control and monitoring.

4.1.4 Scheduling using conman sbs

The ”conman sbs” (or equivalent RESTful calls) command adds a job stream to the plan on the fly. If

the network of the added job stream is significantly complex, both in terms of dependencies and cardinality, it
could cause a general delay in the plan update mechanism. In this scenario, due to scheduling coherence, all
the initial updates pass through the main thread queue (mirrobox.msg) bypassing the benefits of

multithreading. It is extremely difficult to identify the complexity of the network that would cause this kind of
queueing, in any case, the order of magnitude is of several hundreds of jobs in the job streams and internal
and/or external dependencies.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

35

4.1.5 Scheduling using “every” option
“Every” feature allow to create a new instance of a job stream or of a job in the plan, but while for the

former case the impact is not relevant at run time, because the instances are already included in the plan, the
latter causes multiple internal “sbj” to the same job stream instance that could affect performances especially
in the plan updates.

It is very important to verify if the “EVERY” option is used with minimal values (few minutes) to avoid to increase
the number of jobs in a job stream (few hundreds of job could impact performances). There are several
methodologies that could help the driving of business need:

• Move EVERY option at job stream level if possible

• Split the Job stream in multiple job stream with “AT xx till xx” (time partitioning)

4.2 Dynamic domain manager table cleanup policy

While the workload increases in terms of the number of jobs executed per day on dynamic agents, the
dynamic domain manager historical tables increase accordingly. Data persistency in this table allows to perform
job log retrieval for archived plans. The following parameters, in the <DATA_DIR>/broker/config/

JobDispatcherConfig.properties file, define the cleanup policy:

• SuccessfulJobsMaxAge

• UnsuccessfulJobsMaxAge

• MoveHistoryDataFrequencyInMins

By default, the cleanup thread starts after the time specified by “MoveHistoryDataFrequencyInMins”

lapses since the last occurrence completion or application server boot and removes jobs from the table
accordingly with their status and age. If the job table is large (magnitude 10^6 rows), and the number of records
to delete high (magnitude 10^5), this activity impacts Workload Schedule performance and throughput
capabilities, as shown by the example below.

During 1200 jobs/min constant workload, the dynamic job cleaning starts deleting almost 7x10^5 rows of
jobs that were 10 days old and in successful state. The delete operation in this case took almost 7 minutes to
complete, causing an intensive I/O activity on the database, which impacted overall product throughput
capabilities.

Figure 35. Plan update delay while dynamic job table is being cleaned up

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

36

Figure 36. Database Server disk busy while dynamic job table is being cleaned up

Figure 37. Impact Dynamic Domain Manager throughput capabilities while dynamic job table is being
cleaned up

To avoid the behavior described above, it could be suggested to handle the policy in a more controlled
way. For instance, a specific job could be used to run the cleanup invoking the built-in Workload Scheduler
script:

<INST_DIR>/TDWB/bin/movehistorydata.sh -successfulJobsMaxAge 240

The script could be executed on a job scheduled during the appropriate time window, when the daily jobs
execution is low. In this case, the following configuration should be applied in the
<DATA_DIR>/broker/config/JobDispatcherConfig.properties:

SuccessfulJobsMaxAge = 360 (15 days)

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

37

MoveHistoryDataFrequencyInMins = 720 (12 hours)

5 Recommendations

5.1 CPU capacity

All tests described in this document were executed on virtual CPUs assigned exclusively to VMs
(reserved resources). The Workload Scheduler product can run successfully with different configuration.
However, in the event additional resources are available, or deploying into a virtual environment where over
commitment is possible and resources will be dynamically utilized, the recommended values will permit greater
concurrency and reduce processor latency. While planning the correct CPU sizing, the information provided in
Table 10 could be a reference point to start. The validity of the superposition property that allows us to assume
that the resource usage could be considered as the sum of the UI (DWC) usage plus the core scheduling usage
was demonstrated.

5.2 Storage

It is not in the scope of this document to suggest a specific storage solution, but the relevance of I/O
capacity was underlined in previous performance reports in relation to the overall product performance.

The numbers presented in Figure 39 could be used as a reference while planning a solution, because
they are the output of I/O Industry standard benchmark, such as IOzone, and they can be considered key
performance indicators to be used for comparison.

SCHEDULE MDMWS#CLEANUP_DWB_DB
DESCRIPTION "Added by composer."
ON RUNCYCLE RULE1 "FREQ=DAILY;INTERVAL=1"
AT 2345
:
EU-HWS-LNX47#CLEANUP_DWB_DB
 SCRIPTNAME "/opt/IBM/TWA/TDWB/bin/movehistorydata.sh -dbUsr db2user -dbPwd password
-successfulJobsMaxAge 240 -notSuccessfulJobsMaxAge 720"
 STREAMLOGON root
 DESCRIPTION "This job is used to invoke the script which performs the cleanup of
old dynamic jobs in the database"
 TASKTYPE UNIX
 RECOVERY STOP

Figure 38. Example of Job Stream that handles the cleanup of Dynamic Domain Manager table entries

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

38

Figure 39. IOzone benchmark output run with “-R -l 5 -u 5 -r 4k -s 100m –F file1 ...file5” options

Moreover, we have monitored VMWare ESXi server disk latency over time while Workload Scheduler
daily production plan was running. In average the disk latency was negligible, with some sporadic peaks lower
than 5 ms. Disk latency needs to be monitored constantly because if it increases over the desired threshold of
5 ms, the impacts on product performance would be tangible causing delays on real time scheduling.

5.3 Memory

RAM size is strongly impacted by the JVM heap size settings whose suggested configuration could be
found in the following tables:

Concurrent users
range x DWC node

1 – 10 10 -50 50 - 150

DWC heap size 2 GB 4 GB 6 GB

Table 7. Dynamic Workload Console WebSphere Application Server Liberty Base heap configuration

Schedule (jobs/min) 1 – 50 50 -100 100-200 >200

WS Engine Heap size 2 GB 2.5 GB 4 GB 6 GB

Table 8. Engine WebSphere Application Server Liberty Base heap configuration

In addition to the above memory requirements, the native memory for the Java™ process and Workload
Scheduler process should be taken into consideration.

5.4 Tunings and settings

The following parameters were tuned during performance tests. These appliances are based on common
performance best practices, also used in previous releases, and tuning activities during the test execution.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

39

5.4.1 Data Source
As stated at the beginning of this document, starting from version 9.5, IBM Workload Scheduler has

moved from WebSphere Application Server to WebSphere Application Server Liberty Base. As a result, the
utilities known as wastools have been replaced with a number of templates addressing widely used

configurations. You can now configure WebSphere Application Server Liberty Base to work with IBM Workload
Scheduler using the templates provided or define your custom .xml files containing your own configuration
settings.

WebSphere Application Server Liberty Base retrieves the .xml files from the overrides folder

• MDM/BKM/DDM:
<TWA_DATA_DIR>/usr/servers/engineServer/configDropins/overrides

• DWC: <DWC_DATA_DIR>/usr/servers/dwcServer/configDropins/overrides

and applies the configuration settings defined in each file. The file name is irrelevant, because WebSphere
Application Server Liberty Base analyzes each .xml file for its contents.

By default, the datasource settings are specified into the datasource.xml file located in the overrides

folder and these is the list of suggested values for both MDM and DWC nodes:

• statementCacheSize="400"

• isolationLevel="TRANSACTION_READ_COMMITTED"

• connectionTimeout="180s"

• maxPoolSize="300"

• minPoolSize="0"

• reapTime="180s"

• purgePolicy="EntirePool"

These are the values used to run all the workload scenarios described in this document.

5.4.2 Plan replication in the database (mirroring)
The plan replication feature, also known as mirroring, has been improved release after release by means

of a parallelism (multithreading) and caching. The former is defaulted to 6 threads process with 6 related
mirrorbox_.msg queues. In case of high rates (thousands of jobs status updates per minute) or other
environment configuration (network latency between Master Domain Manager and Database), it could be
advisable to enlarge the number of mirroring threads and queues:

• com.ibm.tws.planner.monitor.subProcessors = 10

Furthermore, the usage of a cache improves performances in the way the plan update processing avoids

querying database for information already handled:

• com.ibm.tws.planner.monitor.cachesize = 70000

• com.ibm.tws.planner.monitor.cachemaxage = 21600000

Since Workload Scheduler version 9.4.0.1, a new caching mechanism was added to accomplish the

stress of scenarios with thousands of file dependency status updates:

• com.ibm.tws.planner.monitor.filecachesize = 40000

These settings can be specified in the file on the Master Domain Manager:
<DATA_DIR>/usr/servers/engineServer/resources/properties/TWSConfig.properties.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

40

5.4.3 Oracle database configuration
 The Oracle database configuration that has been used in this context was the default applied by 12c

Enterprise Edition 12.2.0.1.0 installation. It is advisable to enable the Datafile AUTOEXTEND property (ON)
considering that the settings and workload described in this section caused a table space occupancy of about
50 GB.

5.4.4 Comprehensive configuration and tuning

 Parameter Value Comment

D
y
n

a
m

ic
 W

o
rk

lo
a
d

 C
o
n

s
o

le

WebSphere Application Server JVM max
heap = min heap

Required: 4096 for [10, 50] users per
node

Suggested: 6144 for [50, 150] users per
node

WebSphere Application Server JVM options -Xgcpolicy:gencon

–Xmn1024m

-Xmn parameter
value should be
¼ of total heap
size. This
parameter
should be set to
1536m if heap =
6144

WebSphere Application Server Liberty Base
JDBC max Connections

300 datasource.xml

M
a

s
te

r
D

o
m

a
in

 M
a

n
a

g
e

r

<DATA_DIR>/localopts bm check deadline = 0
bm check file = 120
bm check status = 300
bm check untils = 300
bm late every = 0
bm look = 5
bm read = 3
bm stats = off
bm verbose = off

batchman
settings

WebSphere Application
Server Liberty Base
Configuration

JVM
arguments

-Djava.awt.headless=true -
Xdisableexplicitgc -Xgcpolicy:gencon –
Xmn 1024m

- Xmn 1536m if
heap size =
6144

Heap
Required: 4096 for [100, 200] jobs/min

Suggested: 6144 for >200 jobs/min

Data Source

JDBC Type = 4 datasource.xml

Connection Timeout = 180

Max Connections = 300

Min Connections = 0

Purge Policy = EntirePool

Reap Time = 180

Statement Cache Size= 400

D
B

 (
d

b
2

)

LOGPRIMARY 200 MB total
transaction log
space LOGFILSIZ 3500

KEEPFENCED NO

MAX_CONNECTIONS AUTOMATIC

MAX_COORDAGENTS AUTOMATIC

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

41

 STMT_CONC LITERALS

This setting
optimizes query
execution and
reduces CPU
usage

SELF_TUNING_MEM ON

APPL_MEMORY, APPLHEAPSZ,
DATABASE_MEMORY, DBHEAP,
STAT_HEAP_SZ

AUTOMATIC

AUTO_RUNSTATS ON

AUTO_STMT_STATS ON

AUTO_REORG OFF

PAGE_AGE_TRGT_MCR 120

TWS_PLN_BUFFPOOL
NPAGES 182000

PAGESIZE 4096

TWS_BUFFPOOL_TEMP
NPAGES 500

PAGESIZE 16384

TWS_BUFFPOOL

NPAGES 50000

PAGESIZE 8192

D
y
n

a
m

ic
a

l
W

o
rk

lo
a

d
 B

ro
k
e

r

<DATA_DIR>/broker/config/J
obDispatcherConfig.properti

es

Historical data
management

MoveHistoryDataFrequencyInMins=720

SuccessfulJobsMaxAge = 360

<DATA_DIR>/broker/config/
ResourceAdvisorConfig.prop

erties

MaxAllocsPerTimeSlot = 1000

TimeSlotLength = 10

MaxAllocsInCache = 50000

<DATA_DIR>/usr/servers/en
gineServer/resources/propert

ies/TWSConfig.properties

Plan
replication

configuration

com.ibm.tws.planner.monitor.subProcessors = 10

com.ibm.tws.planner.monitor.filecachesize= 40000

com.ibm.tws.planner.monitor.cachesize = 70000

com.ibm.tws.planner.monitor.cachemaxage = 21600000

Table 9. Main configurations and tunings

6 Capacity Plan Examples

In the context of this document, the number of key parameters used to identify the workload was kept to
a minimum:

1. Number of concurrent users.

2. Number of jobs to be scheduled.

3. Percentage of dynamic jobs to schedule.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

42

With the above input, it is possible to forecast the resources needed to host the version 9.5.0.x product.
Internal fit functions were used to model the workload and resource usage relationship. A 65% CPU usage was
the threshold considered before requesting additional core.

In this section, some examples of capacity planning are reported. Remember that all the requirements
are related to Linux X86 VM in a VMWare virtualization with reserved resources; nevertheless, this information
could be used as a reference point for different platform architectures.

NODE

Number of virtual
vCPU cores

RAM Capacity (GB)

10K jobs (50% FTA +50% DYN) per day (8 jobs/min), 10 concurrent users

1 Node
WS Engine, RDBMS,

DWC
4 16

250K jobs (50% FTA +50% DYN) per day (175 jobs/min), 50 concurrent users

2 Nodes

WS Engine, DWC 4 16

RDBMS 4 16

500K jobs (50% FTA +50% DYN) per day (350 jobs/min), 100+ concurrent users

3 Nodes

WS-Engine 8 32

RDBMS 8 32

DWC 5 20

Table 10. Capacity planning samples

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

43

7 Notices

This information was developed for products and services offered in the U.S.A.

HCL may not offer the products, services, or features discussed in this document in other countries.
Consult your local HCL representative for information on the products and services currently available in your
area. Any reference to an HCL product, program, or service is not intended to state or imply that only that HCL
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any HCL intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-HCL product, program, or service.

HCL may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to HCL TECHNOLOGIES LIMITED email: products-info@hcl.com

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: HCL TECHNOLOGIES LIMITED PROVIDES THIS PUBLICATION
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. HCL may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-HCL Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this HCL product and use of those Web sites is at your own risk.

HCL may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should
contact HCL TECHNOLOGIES LIMITED email: products-info@hcl.com

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by HCL under terms of the HCL License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-HCL products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. HCL has not tested those products and cannot

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

44

confirm the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions
on the capabilities of non-HCL products should be addressed to the suppliers of those products.

All statements regarding HCL's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All HCL prices shown are HCL's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

7.1 Trademarks

HCL, and other HCL graphics, logos, and service names including "hcltech.com" are trademarks of HCL.
Except as specifically permitted herein, these Trademarks may not be used without the prior written permission
from HCL. All other trademarks not owned by HCL that appear on this website are the property of their
respective owners, who may or may not be affiliated with, connected to, or sponsored by HCL.

IBM and other IBM graphics, logos, products and services are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both. A current list of IBM
trademarks is available on the Web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, ltanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Oracle database, Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Oracle and/or its affiliates.

VMware's and all VMWare trademarks and logos are trademarks or registered trademarks in the United
States and certain other countries.

Dell, EMC, DellEMC and other trademarks are trademarks of Dell Inc. or its subsidiaries in the United
States and certain other countries.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo and JBoss are registered trademarks of Red
Hat, Inc. in the U.S. and other countries. Linux is a registered trademark of Linus Torvalds. All other trademarks
are the property of their respective owners.

Mozilla and all Mozilla trademarks and logos are trademarks or registered trademarks in the United States
and certain other countries.

Google LLC All rights reserved. Google and the Google Logo are registered trademarks of Google LLC.

NETAPP, the NETAPP logo, and the marks listed at www.netapp.com/TM are trademarks of NetApp, Inc.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT I May 2020

45

hello there! I am an Ideapreneur. i believe that sustainable business outcomes are driven by relationships nurtured through
values like trust, transparency and flexibility. i respect the contract, but believe in going beyond through collaboration, applied
innovation and new generation partnership models that put your interest above everything else. Right now 150,000 ideapreneurs
are in a relationship Beyond the Contract™ with 500+ customers in 46 countries. how can I help you?

