Workload Scheduler Version 9.5.0.2
Performance Report

an IBM + HCL product

Document version 1.0

Pier Fortunato Bottan

Giorgio Corsetti

Alessandro Tomasi

Workload Automation Performance Team - HCL Rome Lab

LA
HCL sor-T'WARE H CL

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

© Copyright 2020 HCL Technologies Ltd. HCL Technologies Ltd., and the HCL Technologies Ltd. logo
are trademarks of HCL Technologies Ltd., registered in many jurisdictions worldwide.

This edition applies to version 9, release 5, fix pack 2 of Workload Scheduler and to all subsequent releases
and modifications until otherwise indicated in new editions.

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

CONTENTS

CONENES ... 3
LiSTOF FIQUIESeeeeeeeeeeeeeee s 3
LiSEOF TADIS............coeeeeeeeeeeeeeeeee e 4
U 111 o Yo [o7 1 [e Y o U RURPPPRPRIN 6
1.1 What's new since version 9.5cccccci 6
B Y o o T - T 6
2.1 EXE@CULIVE SUMMAIY ... e e e e e e e e e e e 7
3 PerfOrmance TStoouuuiiiie et 7
3.1 TESEAPPIOACK ... e 7
3.2 LT VT o] 4T 01T o1 TP 7
3.3 L1532 o Lo L= OSSP 13
34 Test Benchmarks and Results ... 13
3.4.1 Scheduling WOrIKIOAdcoiiiiiiieiiiii ettt e e et e e st s st e e s e e e e e nban e e e nnnes 13
3.4.2 Dynamic Workload Console WOrkIOadc..ceeiiiiiiiiiiiiie e 20
3.4.3 Scheduling Workload for IBM Workload Scheduler on IBM Cloud Private.........c.ccccccovcvvieeee..n. 27
BeSE PracCtiCes.............ouuuuiiii ittt et e e e e e e e aaane 31
4.1 T 1= T 1] 1 T S ER USSR 31
4.1.1 Scheduling using event rules: Event Processor Throughput...........cccccooviiiiiiniie e 31
4.1.2 Scheduling using file dEPENAENCIESuueiiiiiiiiiiiiic e e e 33
4.1.3 Scheduling using a start CONAItioNoeiiiiiii i 34
4.1.4 Scheduling USING CONMAN SDScccciiiiiiiiiiii e e e e e s e e e e e e s enrnreees 34
4.1.5 Scheduling using “@Very” OPLIONcooiiiiiiiii e 35
4.2 Dynamic domain manager table cleanup poliCycccooiiiiiiiiiiiii, 35
5 ReCOMMENAALIONScooiiiiiiiiiiie e 37
5.1 CPU CaP@CItY ...coooiiiiiieieiei et e e e e e e e e 37
5.2 S (o] - Vo [ST PP P PPPPPRPPPPPPPP 37
5.3 LT 11 Lo PP ETPPPPP 38
5.4 Tunings and settings ... 38
Lot B D - = S T U o S 39
5.4.2 Plan replication in the database (MiIrroring)coocuuiiiiiiii e 39
5.4.3 Oracle database CoONfigUrationcoouiiiiiiiiii e 40
5.4.4 Comprehensive configuration and tUNINGcooiiiiiiii e 40
6 Capacity Plan EXamPIESsoouuuuiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeee e 41
A | o 1 [o= U UPPT 43
71 Trademarks ... 44
LIST OF FIGURES

Figure 1. Overall deploy view of test environment ... 8
Figure 2. Dynamic Workload Console node configurationcccccevvvviiiiiiiiiiiiiiiiiiieneeen, 9

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

Figure 3. Master Domain Manager node configurations................ccvvvvviiiiiiiiiiiiiiiiiiiiiiieeeee, 10
Figure 4. Database node configurations...............uiiiii i 11
Figure 5. Storage SOIULIONcooiiiiiiiiiiiiiieiee e 12
Figure 6. Dynamic agent daily throughput. The total number of jobs scheduled in a day is
ArOUNG 4.3 XTI 0N et e e e et ettt e e e e e et e aa b e e e e aeaeaee 15
Figure 7. Zoomed view of dynamic agent scheduling.............cccoooviiiiiiiiiiiiiii e, 16
Figure 8. Dynamic agent schedule: ad hoc submission with 1000 scheduled jobs.............. 16
Figure 9. Dynamic agent schedule: jobs with internal and external conditional dependencies
(3200 tOLAI JODS) ...ttt 17
Figure 10. Dynamic agent schedule: jobs belonging to a critical path (Workload Service
ASSUIANCE) ..ttt 17
Figure 11. Fault tolerant agent schedule throughput in daily workload (1075 jobs).............. 18
Figure 12. Average job schedule delay over time ..o 18
Figure 13. Job plan status update delay over timeccoooiviiiiiiiiii e, 19
Figure 14. Total average CPU utilization at master domain manager vs different workload 19
Figure 15. Monitor Job Scenario with retrieve of job 10g..........cccoeviiiiiiiiiiii e, 21
Figure 16. Plan View and job Stream VIEW.............oooviiiiiiiiiiiiiiiiiiieeeeeee 21
Figure 17. Monitor event rule and triggers.........oooo i 22
Figure 18. Create jobs and jJob Streams............oooviiiiiiiiiiiiiiiiiiiie 23
Figure 19. Edit existing JOb Streamccooo i 23
Figure 20. Concurrent USEriNCOMEccuviiiiiiiiiiiiiiiiiiieeeeee ettt 24
Figure 21. Pages per second attempted during workloadccoovviiiiiiiiiiiiiieeeeeee, 25
Figure 22. First set of response time trend during increasing workload...............ccccccccoeee.e. 25
Figure 23. Second set of response time trend during increasing workload 26
Figure 24. Third set of response time trend during increasing workload...............cccccccoce... 26
Figure 25. CPU utilization during DWC concurrent users test. The workload is distributed
OVEI TWO DWEC NOAES ... i a e e e e e 27
Figure 26. Monitor Jobs scenario - average response time comparison between 9.5 FP2
AN 9.0 F P i ————— 27
Figure 27. yaml file example for persistent storageccccccvvvviiiiiiiii 28
Figure 28. Dynamic agent daily throughput on ICP environment..............ccccoooeiiiiiiiiiiiinnnnnn. 29
Figure 29. Average job schedule delay over time on ICP environment.............cccccccvvnnnnn. 30
Figure 30. Job plan status update delay over time on ICP environment...........cccccccvvvennenn. 30
Figure 31. Number of actions triggered by the event processorccccccvvvviiiiiiiiiiiinnnnnn. 32
Figure 32. Dynamic Domain Manger job submission throughput in the file creation event
(0] LIRS T oY o =1 4 o T 32
Figure 33. MDM CPU utilization comparison with and without event rule processing 33
Figure 34. File dependency releases in a 1200 jobs/min workload as baseline 34
Figure 35. Plan update delay while dynamic job table is being cleaned up 35
Figure 36. Database Server disk busy while dynamic job table is being cleaned up............ 36
Figure 37. Impact Dynamic Domain Manager throughput capabilities while dynamic job
table is being Cleaned UP oo 36
Figure 38. Example of Job Stream that handles the cleanup of Dynamic Domain Manager
L€= 10 LT oL T= USRI 37
Figure 39. 10zone benchmark output run with “-R -1 5 -u 5 -r 4k -s 100m —F file1 ...file5”
(0] 010 o 1= 3PS 38
LISTOF TABLES

https://hclo365.sharepoint.com/sites/workload_scheuler_pvt/Shared%20Documents/Performance%20Report/TWS_9.5.x/HCL_Software_WorkloadScheduler9.5.0.2_TechWhitePaper.docx#_Toc41576925
https://hclo365.sharepoint.com/sites/workload_scheuler_pvt/Shared%20Documents/Performance%20Report/TWS_9.5.x/HCL_Software_WorkloadScheduler9.5.0.2_TechWhitePaper.docx#_Toc41576925

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

Table 1. SOftWAre |8Vl OFf COU ... ettt e e e eeens 8
L= o) (=3 =15 4 (o Lo F= TR 13
Table 3. Daily plan workload COMPOSITIONcoiiiiiiiiiii e 14

Table 4. Dynamic Worklaod Console secnarios with distributrion (%) and rates per user....20
Table 5. Event processor capacity in terms of maximum throughput (events per minute)

(o70] g g1 o= 1 [<To] TP 31
Table 6. Dynamic Workload Console WebSphere Application Server heap configuration...38
Table 7. Engine WebSphere Application Server heap configuration............c..cccceeeeeieiinnnn, 38
Table 8. Main configurations and tUNINGS..........ooooiii i 41
Table 9. Capacity planning SAMPIESoiiiiiiiiiic e e e e e eaaees 42

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

1 Introduction

Workload Scheduler is a state-of-the-art production workload manager, designed to help customers meet their
present and future data processing challenges. It enables systematic enterprise-wide workload processing for
both calendar and event-based (real-time) workloads across applications and platforms. Workload Scheduler
simplifies systems management across distributed environments by integrating systems management
functions. Workload Scheduler plans, automates, and controls the processing of your enterprise’s entire
production workload.

Pressures in today’s data processing environment make it increasingly difficult to guarantee a high level of
service to customers. Many installations find that their batch window is shrinking. More critical jobs must be
finished before the workload for the following morning begins. Conversely, requirements for the integrated
availability of online services during the traditional batch window put pressure on the resources available for
processing the production workload.

Workload Scheduler simplifies systems management across heterogeneous environments by integrating
systems management functions.

1.1 What’s new since version 9.5

In the last year and half, the major release 9.5 and two different fix packs have been released.

For more details about new features introduced with these fix packs, see the Summary of enhancements in
the online product documentation in IBM® Knowledge Center:

e 95GA
e 9O5FP1
e 9O5FP2

This new major release 9.5 and related fix packs introduced several changes in the Workload Scheduler
infrastructure and functional capabilities. Some of these changes have been considered with special focus
during Performance Test phase because there was the need to understand how those changes might affect or
not the overall performance and scalability of the product, if compared with the previous releases.

In particular, the main focus areas from Performance Testing perspective have been:

o the replacement of IBM WebSphere® Application Server with IBM WebSphere Application
Server Liberty Base for Master Domain Manager, Backup Domain Manager and Dynamic
Workload Console

e the introduction of the <DATA_DIR> directory, where are located the product data and data
generated by IBM Workload Scheduler, such as logs and configuration information

e Dynamic Workload Console evolution based on new architectural foundation of modern front-
end technologies while maintaining previous workload logic and processes. With this
refurbishment, Dashboard Application Services Hub (DASH) is replaced by a lean, high-
performance in-house solution that is now based on a lightweight, highly composable, fast to
start, dynamic application server runtime environment, WebSphere Application Server Liberty

o the new capabilities to organize scheduling objects in a hierarchy of folders. This new capability
has been initially added for job and job streams only with 9.5 GA but the full support for all
scheduling objects has been extended with 9.5 FP2

e deployment of IBM Workload Scheduler on IBM® Cloud Private, an integrated environment for
managing containers that includes the container orchestrator Kubernetes, a private image
repository, a management console, and monitoring frameworks

2 Scope

https://www.ibm.com/support/knowledgecenter/SSGSPN_9.5.0/com.ibm.tivoli.itws.doc_9.5/common/src_gi/eqqg1twsenhance95.htm
https://www.ibm.com/support/knowledgecenter/SSGSPN_9.5.0/com.ibm.tivoli.itws.doc_9.5/common/src_gi/eqqg1twsenhance95fp1.htm
https://www.ibm.com/support/knowledgecenter/SSGSPN_9.5.0/com.ibm.tivoli.itws.doc_9.5/common/src_gi/eqqg1twsenhance95fp2.htm

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

2.1 [Executive summary

The objective of the tests described in this document is to report the performance results for the new version of
the product, V9.5.0.2, executed in a test environment based on the VMWare ESX® - Linux x86 platform with
the new middleware dependencies in comparison with previous versions (see Workload Scheduler v9.4 Fix
Pack 3 performance report) .

The performance results could be summarized as follows:
» Consolidate previous performance achievements in terms of throughput
¢ Validate tunings for new middleware

o New key performance indicators for product deployment via containers

3 Performance Test

3.1 Test Approach

As specified in section 2.1, the main focus for Workload Scheduler 9.5 performance tests was to validate that
the new middleware, supporting the product, allows the same results in terms of throughputs and capacity with
respect previous releases; to achieve this the scheduling throughput, resource consumption and reliability are
continuously certified.

In this context, continuous monitoring was applied with special focus on key performance indicators (scheduling
and mirroring throughput, average delays, internal queues sizes) and on the main hardware resources (CPU,
memory, disk busy) to prevent memory leaks, unexpected hardware consumption and product performance
degradation during long run workload scenarios.

3.2 Environment

The test environment was based on virtual machines hosted on VMware ESXi servers running on Dell™
PowerEdge R630 Intel™ Xeon(R) CPU E5-2650 v4 @ 2.20GHz. All tests were performed in a 10 GB local area
network.

The following table summarizes the software used and the version:

Linux Red Hat® server 7.7

(0153
Kernel 3.10.0-1062.1.1.el7
Oracle® 12c
RDBMS o E)ll?:lza Enterprise Edition
o 12.2.0.1.0
WebSphere Application Server Liberty
Base 20.0.0.3
J2EE

OpenJDK Runtime Environment
(1.8.0_232-b09)

LDAP IBM Directory Server 7.2

http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/products_platforms_workloadscheduler9.4.0.3_techwhitepaper.pdf
http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/products_platforms_workloadscheduler9.4.0.3_techwhitepaper.pdf

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

9.5.0.2

Web Component
Dynamic Workload Console
9.5.0.2

Table 1. Software level of code

[L7 DB2 JDBC Provider LY
_g_j dbec/twsdb

WORKLOAD AUTOMATION

Workload Scheduler 9.5.0.2 i ==
MDM

Dynamic Agent

D FTAAGTS O DYNAGTE

second environment

DB2Z Database

l TWS J

I
I
|
I
1

DB2 11.1 Installation |

(L

Liberty >= 20.0.0.3 y | DWC node | MDM node | DB node |
EEEE— & } (. S
g | Agent1 node |
=Y FTA [E8] Dynamic Agent Ly
O FTAAGT1 O DYNAGT1
m FTA LY Dynamic Agent Ly
[Grou 1 D FTAAGT2 O DYNAGT2
i Cluster
VMware ESXi
Server VMware ESXi
In—c— Server
xB6 Server
L * (Server))
— | Agent2node |
- y
xB6 Server VMware ESXi & FTA LINEY Dynamic Agent L
L “ (Server)) Server O FTAAGT3 O pYNAGT3
m £y FTA [LINEY Dynamic Agent L]
XB6 Server O rrAAGT4 O DYNAGT4
K!_ * (Server) J
2
| Agent3 node |
_ StoragePool L |
& (Storage Pool) | Agentd node J - T T pynamic Agent &
O FTAAGTS C DYNAGTS
FTA [LIgEY) Dynamic Agent LY
E FTAAGTT lj DYNAGTS FTA E’ D Dynamic Agent E’
= @ @ 0N O FTAAGT6 O DYNAGT?

Figure 1. Overall deploy view of test environment

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

L
CPU Speed = 2,220
CPU Type = ¥Xeon CPU E5-2650 v4 &
Memary Size = 128 i
Madel = Dell Power R&30, 2 Socket (12 core)
w86 Server
1) [Se ver] IBM Java = 1,8.0_232-b09
) Liberty == 20.0.0.3
WebSphere Aé)plic ation Server Liberty
[serverl
VMware ESX - .
Sever Initial Heap Size = 6,144
2 Jvm Arguments = -Xgcpolicy: gencon -Xmn1536m
‘ r Maximum Heap Size = 6,144

Motes = Resource Allocation - Reservation

Cpu reservation =5 x 2,1 GHz =
Memory Size = 20
Vepus =5
VMware Virtual Image
DWW node
Redhat Linux 7.7
& dwcnode
kernel Version = 3,10,0-1062.1,1.el7
Wi
Web Component
Li] Dynamic Workload Console 9.5.0.2 =
Configuration Unit
=] ulimit
data seq size = unlimited <DWCDATA>{usr fservers/dwecServer,/configDropins/overrides/jvm.options
max memory size = unlimited
max user processes = 262144 » - msElddm
open files = 105000 o “XmrE1d4m

stack size = 32768 ;
» —xgcpolicy :gencon

® -¥Xmnl33am

<DWWCDAT A =/usr fservers/dwcServer/configDroping /overrides/datasource.xml

=dataSource id="oracle" jndiName="jdbc/twsdh" statementCacheSize="400"
isolationLevel="TRANSACTION_READ _COMMITTED" =

<connectiontanager connectionTimeout="180s" maxPoolSize="300"
minPoolSize="0" reapTime="180s" purgePolicy="EntirePool"/>

<jdbcDriver libraryRef="DBDr iverLibs"/>

<jdataSource=

Figure 2. Dynamic Workload Console node configuration

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

CPU Speed = 2,220

CPU Type = Xeon CPU ES-2650 v4

Memory Size = 128

Model = Dell Power R630, 2 Socket (12 core)

I VMware ESX '

.
Notes = Resource Allocation - Reservation
Cpu reservation = 8 x 2,1 GHz

Memory Size = 32
Vcpus =8

VMware Virtual Image

(S M D MEN 0 d § SSS——

Redhat Linux 7.7
master

_Kernel Version = 3.10.0-1062.1.1.el7.x86_64
wb

Configuration Unit
ulimit
data seg size = unlimited
max memory size = unlimited
max user processes = 262144
open files = 105000
stack size = 32768

ls

WORKL_OAD AUTOMATION

ad Scheduler 3.5.0.2 MDM

IBM Java = 1,8.0_232-b09
L«'h Liberty >= 20.0.0.3

£5 engineServer
Initial Heap Size = 6,144

F,'_Maximum Heap Size = 6.144

Websphere Application Server Liberty

Jvm Arguments = -Xgcpolicy:gencon -Xmn1536m

i

) —

EAR Component
7 TWSEngineModel

EAR Component

#% ITDWB (broker)
oxa

on

i}

I

<TWSDATA> fusr/servers/engineServer /configDropins/ AN

overrides/jvm.options

® -Xms6144m
® -Xmx6144m
 -Xgcpolicy:gencon
® -Xmn1S36m

<TWSDATA>/usr fservers/engineServer /configDropins/
overrides/datasource.xml

<dataSource id="oracle" jndiName="jdbc /twsdb"
statementCacheSize="400" isolationLevel="
TRANSACTION_READ_COMMITTED">
<connectionManager connectionTimeout="180s"
maxPoolSize="300" minPoolSize="0" reapTime="180s"
purgePolicy="EntirePool"/>

<jdbcDriver libraryRef="DBDriverLibs"/>

</dataSource>

localopts
bm check dedline =0

< <Configuration File >>
TWSConfig.properties

com.ibm.tws.planner.monitor.cachemaxage =
21600000
com.ibm.tws.planner.monitor.cachesize = 70000
- com.ibm.tws.planner.monitor.filecachesize = 40000
“com.bm.tws.plamer.mrﬁor.scbt’rocessors =10 l

bm check file = 120
bm check status = 300
bm check until = 300
bm late every =0
bmlook=5

bmread =3

< <Configuration File>>

bm stats = off
bm verbose = off

(1>

< <Configuration File>>
ResourceAdvisorConfig.properties

MaxallocsInCache = S0000
hMexAllocsPa'TineSlot = 1000 |

Figure 3. Master Domain Manager node configurations

10

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

VMuware ESX
L Server

Motes = Resource Allocation - Reservation
Cpu reservation =8x 2.1 GHz
Memory Size = 32
Viepus =8
VMware Virtual Image
DE node

Rgldh at Linux 7.3
& database

Kernel Version = 3.10.0-514

Configuration Unit

=] ulimit

data seq size = unlimited

max memory size = unlimited
max user processes = 262144
open files = 105000

stack size = 32768

CPU Cores Installed = 12
CPU Count =2
CPU Speed = 2,220
CPU Type = Xeon CPU ES-2650 w4
Model = Dell Power R630, 2 Socket (12 core)
xBb6 Server
[Server]

DBZ Version = 11.1.4.4a

INSTANCE_MEMORY = AUTOMATIC(7391023)
KEEPFENCED = NO

MAX_CONMNECTIONS = AUTOMATIC
Max_COCRDAGENTS = AUTOMATIC{200)

L

l DB2 11 J
i DE2 Installation BUFFERPOOL
[C] TwS_BUFFERPOOL
NPAGES = 50000
DBZ Instance " PAGESIZE = 8192
CE DB2INST “

BUFFERPOOL
[0l TWS_PLN_BUFFERPOOL

NPAGES = 182000
PAGESIZE = 4096

W

BUFFERPOOL
[l TW5_BUFFERPOOL_TEMP

NPAGES = 500
PAGESIZE = 16354

APPL_MEMORY = AUTOMATIC(40000)
APPLHEAPSIZE = AUTOMATIC(4096)
AUTC_RUMNSTATS = ON
AUTCO_STMT_STATS = ON
AUTCRECRG = OFF
DATABASE_MEMORY = ALUTOMATIC(1822482)
DBHEAP = AUTOMATIC(4536)
LOGFILSIZ = 3000
PAGE_AGE_TRGT_MCR = 120

Page Size = 4096

SELF_TUNING_MEM = 0N
STAT_HEAP_SZ = AUTOMATIC(4384)
STMT_COM = LITERAL

DBZ Database

Wl TWS

Figure 4. Database node configurations

11

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

b xB6 Server J
[Server]
Paort part
Config = RoundRobin Fiber Channel
7, ,%vpe = 8 Gb Fiber C.

Multipath = Active/Acti
L SAN Switch J ultipa ctive/Active
l SAN Switch
Unit port port o
~Type = 16 Gb Fiber C, [_ .
il .&T\rpe 16 Gb Fiber .

ONTAP

l Unit

StoragePool
Storage Pool

Disk0
Disk1
Disk10
Disk2
Disk3
[l e

Figure 5. Storage Solution

12

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

3.3 Test tools

The main tools used in this performance test context are listed in the following table.

Tool Scope Version Link
https://www.ibm.com/developerworks/aix/library/
nmon Resource usage 169 "
au-nmon_analyser/index.html
I0zone Benchmark I/O capacity 3.434 WWW.iozone.org
Perfanalyst DB2 and WAS tuning 114 https://www.ibm.com/support/pages/ibm-
performance-analyst-tool
ROOT framework Data analy3|s and 6.0.8 https://root.cern.ch/
Presentation
Rational Performance | Concurrent DWC users 95 https://www.ibm.com/us-en/marketplace/ibm-
Tester test) rational-performance-tester
Java Core, Garbage https://www.ibm.com/support/home/product/C10
IBM Support Assistant | Collector and thread dump 5.0.2.8 | 0515X13178X21/other_software/ibm_support_a
analysis ssistant
Network delays emulator of Kernel
netem . y 3.10.0- https://wiki.linuxfoundation.org/networking/netem
wide area network 514

Table 2. Test tools

3.4 Test Benchmarks and Results

3.4.1 Scheduling Workload

This section reports the details of the workload included in the daily production plan deployed in the Performance
Test environments. The workload is distributed among fault tolerant and dynamic agents. The total number of
jobs that are executed daily is around 550000 jobs per day.

The scheduling objects (such as jobs, job steams, workstations and others used in the daily workload) have
been organized in a hierarchy of folders to validate that this new feature doesn’t determine any unexpected
performance impacts on product scheduling capabilities.

13

https://www.ibm.com/developerworks/aix/library/au-nmon_analyser/index.html
https://www.ibm.com/developerworks/aix/library/au-nmon_analyser/index.html
http://www.iozone.org/
https://www.ibm.com/support/pages/ibm-performance-analyst-tool
https://www.ibm.com/support/pages/ibm-performance-analyst-tool
https://root.cern.ch/
https://www.ibm.com/us-en/marketplace/ibm-rational-performance-tester
https://www.ibm.com/us-en/marketplace/ibm-rational-performance-tester
https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant
https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant
https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant
https://wiki.linuxfoundation.org/networking/netem

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

¢ Plan includes 124800 jobs scheduled in around 3 hours. In particular, there are 52000 jobs
scheduled to be executed during a 10-minute peak. In addition, only for dynamic agents, around
361000 jobs are scheduled in 5 hours (1200 jobs/min).

=y \WWSA - Critical pat

*48 complex patterns, composed of multiple linked job streams (4) with 10 jobs each. 4 jobs for
each complex pattern are defined as critical jobs.

©200 TWS-Objects rules - each rule matches a workstation and job name belonging to the daily
production plan mentioned above and the success state of job execution. The action, in case of
event matching, is to create a new message log. Normally, at the end of each test run, 4140
events (Message loggers) are generated.

¢ File-created rules -These event monitor rules generate a specific message logger each time a
new file with a predefined naming convention is created on each agent. In total, 240 events
(message loggers) were generated each hour, that means 1 event every 4 minutes on each of the
16 agents.

¢ 5% of additional workload, an additional 3200 jobs/800 job streams over 4 dynamic agents and 4
FTAs . This means that there are 100 job streams for each agent, half of which have internal
dependencies and the other half has external dependencies. In the case of conditional
dependencies, there are also 800 join conditions overall.

Ad Hoc Submission (conman sbs

eDynamic submission of jobs using the command "conman sbs" to submit a job stream with 20
different jobs (5 per agent) with dependencies between them in a chain. In total, 1000 dynamic
jobs were submitted in 10 minutes.

= File Dependencies

#35000 job streams with a single job definition and a single file dependency defined at job stream
level, distributed across the 8 FTAs present in the test environment (4375 jobs per agent). These
35000 job streams have a time dependency that is different for each FTA: the single block of 4375
job streams per agent is scheduled to start one hour after the preceding one for a duration of 8
hours long.

Table 3. Daily plan workload composition

This workload is used as a standard benchmark for establishing key performance indicators whose baseline is
continuously verified to track performance enhancements.

14

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

Throughput Dynamic Agent Scheduling (broker)

£ C

£ 3000 I
2 - |
o] — It
§=X — L
2500 — I

= N

2000 | §
N

- N

N

— N

- N
1500 §

- N

B N\

u N\

1000 — §

_ N

500 | §

- N

-l |

ol N D
11 05 15:00 1105 18:00 11 05 21:00

Figure 6. Dynamic agent daily throughput. The total number of jobs scheduled in a day is around 4.3
x1075

The workload represented in Figure 6 is the daily load of dynamic agent scheduling. In particular, the jobs from
18:00 to 23:00 are standard schedules with “every” option. The workload from 14:30 to 17:10 has different
components as can be observed from the zoomed view of Figure 7.

15

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

Dynamic Agent Throughput

£ ~
£ 1200 —
E — === standard workload
S, B conditional dep.
1000 __ - critical JS
L I conman sbs
800 —
B n A
600 —
400 —
200 —
o L

1
14:30 15:00 15:30 16:00 16:30 17:00

Figure 7. Zoomed view of dynamic agent scheduling

sbs submission

jobs/min

40

20

|
16h30 17h00

Figure 8. Dynamic agent schedule: ad hoc submission with 1000 scheduled jobs

16

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

conditional dependencies

jobs/min
8
Tt

25

20

15

10

| |
1105 14:00 1105 15:00 1105 16:00 1105 17:00

Figure 9. Dynamic agent schedule: jobs with internal and external conditional dependencies (3200
total jobs)

crtitical path

jobs/min

=
III‘III TTT III|\I\|II\‘ IlllH‘ Ill\ \|I

17:00 18:00

Figure 10. Dynamic agent schedule: jobs belonging to a critical path (Workload Service Assurance)

17

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

Throughput Not-Dynamic Agent Scheduling

bs/min

2500

jo

2000

1500

1000

500

A AN
105 15:00 11 05 18:00 11 05 21:00

o

Figure 11. Fault tolerant agent schedule throughput in daily workload (1045 jobs)

The scheduling throughput represented in this section did not suffer any queuing phenomenon (incoming
and outgoing throughput are equivalent).

In fact, the throughput analysis reconfirms the performance and scalability levels assured in previous
releases. From the workload scheduler user perspective that means, for instance, no substantial delay in the
scheduling of a job when the same job is ready to start (see Figure 12) and no substantial latency in the job
and job stream status update from the Dynamic Workload Console (see Figure 13).

schedule delay

Delay min.
o o
3 3
[Ty

T

T

0.50 —

Figure 12. Average job schedule delay over time

18

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

mirroring delay

® 060[— "
2 %%
£
£
0.50
|
040 — 1
— | |
s ||
|
0.30 []
- i
: n
0.20 1;
M |
010 i | |
i | \ " ‘ j |
| ol e | o Aln
. { | |
o M lnllnfl 1ralll L Bl B o R o g BLE] el
14h45 15h00 15h15 15h30 15h4

Figure 13. Job plan status update delay over time

The above results evidence the promptness of Workload Scheduler in the case of an intensive workload
(2600 jobs/min both for dynamic and fault tolerant agents) with a dynamic scheduling delay of less than 1
minute. It is interesting to note how the average scheduling delay is around 4 seconds as expected from the
batchman process configuration (bm look, bm read settings). It must be remarked, once again, that these
results must be correlated with the test environment and the workload discussed in this context; nevertheless,
they could be considered as references while planning a Workload Scheduler deployment.

Figure 14 shows the CPU resource utilization trend on the MDM with respect to the outcoming throughput
for dynamic agent and fault tolerant agents scheduling as described in section 3.4.1. It is interesting to underline
how the MDM CPU footprint for 9.5.x is lower than 9.4.x. This means that the 9.5.x MDM spends less CPU than
9.4.x MDM to run the same workload over time.

Cpu utilization Comparrison between 9.4 and 9.5

X 25 P ® 94MDM

-~ & 9.5NVDM

0 500 1000 1500 2000 2500 3000

job schedule throughput (jobs/min) (dynamic agents and FTAs)

Figure 14. Total average CPU utilization at master domain manager vs different workload

19

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

3.4.2 Dynamic Workload Console Workload

The Dynamic Workload Console has been tested to probe the performance and scalability levels assured by
the new architecture for which Dashboard Application Services Hub (DASH) has been replaced by a lean, high-
performance in-house solution that is now based on a lightweight, highly composable, fast to start, dynamic
application server runtime environment, WebSphere Application Server Liberty.

In particular, the concurrent user tests have been executed using a topology with 2 DWC in clusters (see Figure
2 for details on single DWC node configuration) configured to use the same DWC database created on Oracle
12c Enterprise Edition 12.2.0.1.0 Server.

The workload has been designed to replicate scenarios and transaction rates applied in previous tests. Table
describes the scenarios and its weight in the overall payload including user percentage and single user
transaction rate.

Scenario Brief description User % Rate per user
(transaction/min)
Mon01_951jobs Query on job status ()
40 0.5
Mon03_pv Open plan view and drill down in job
stream details () 10 0.5
Erule01_monitorER Select an event rule, view details and
monitor the triggering () 10 0.5
Mod01_CreateJ&JS Create 2 jobs and add then to a new
JS () 20 0.5
Mod02_EditJS Modify JS (
20 0.5

Table 4. Dynamic Workload Console scenarios with distribution (%) and rates per user

Figure 15-19 represent the details of each Dynamic Workload Console scenario, from login, transaction loop,
driven by specific rate, and logout. Multiple data pool sets have been used to achieve variation in the payload,
for example in the Mon_01_jobs scenario the plan queries vary filtering and producing different result set from
few to thousands of jobs.

20

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

% mon01_951jobs
=] Test Resources
L. Welcome
I Login [
w (O Loop (3 iterations): Loop1
v (@ Transaction: Transaction’
l#. mon01 20 monitor workload
2 mon01 30 DQ FTEY
N OSE |f
D=8 |f
~ = Random Selector (2 blocks)
v [Z Weighted Block1 (1) (50%)
L. mon01 31 joblog
(= Weighted Block2 (1) (50%)

L. Logout

Figure 15. Monitor Job Scenario with retrieve of job log

% mon03_pv
=) Test Resources
lz. Welcome
P LoginE
v (& Loop (3 iterations): Loop'1
v (@ Transaction: Transaction’
. mon03 20 planview
k. mon03 30 filter
X Delay (50 sec)
D= |f
L. mon03 40 JS select action
L. mon03 50 open JS view

5 [’

[Logout

Figure 16. Plan View and job stream view

21

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

%% erule01_monitorER
=] Test Resources
Iz Welcome
& Login §
+ (3 Loop (3 iterations): Loop'
v & Transaction: Transaction-ManageErule
erule01 20 Manage Event Rules
-erule01 30 click ok
. erule01 40 next page
.erule01 50 select one rule and view detail
.eruleD1 51 close rule details panel
v & Transaction: Transaction-ViewERtrigger
. erule01 60 Maonitor Event Rules
. erule01 60 select Erule task
. erule01 70 click ok
e |f
LA erule01 71 view first trigger

o R

&

5

¢
'F'

L. erule01 72 close trigger view
l#. erule01 80 close monitor event rule
Iz Logout

Figure 17. Monitor event rule and triggers

22

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

% mod01_createl&Js
el Test Resources [y
lz. Welcome
[LoginE
L. Workload Designer
+ (& Loop (3 iterations): Loop1
v (@ Transaction: Transaction’
@ Custom code: customcode JobTimestamp
(& Custom code: customcode.JSString
. modd1 20 create Job1
. mod01 30 save Job1
. mod01 40 create JobZ
.mod01 41 save Job?2
. mod01 50 create JobStream
.mod01 51 search job1
.mod01 52 add job1
-mod01 60 search Job2
.modd1 61 add JobZ
. mod01 70 save J5

(o e R R L

R
=
o
=]
o
=
—

Figure 18. Create jobs and job streams

% mod02_EditlS
=) Test Resources
lz. Welcome
[Login E
L. Workload Designer
w (& Loop (3 iterations): Loop'
v (& Transaction: Transaction’
L. mod02 30 filter JS
li. mod02 40 select JS
& Custom code: customcode.TimeString
L. mod02 50 edit and save
L. Logout

Figure 19. Edit existing Job Stream

23

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

As said before, the tests have been performed with two Dynamic Workload Consoles pointing to a database for
clustering purpose. The workload balancing has been achieved by using the Rational Performance Tester
capability to uniformly distribute workload between the two nodes. Tests have been scheduled with increasing
payload in terms of concurrent users (Figure 20) with the specific rates and scenarios distribution (Table 4).

The test with 300 users generates an overall concurrency in the steady state of around:

19 pages/seconds

User Load

B Active Users Completed Users

300, ., 90 Users 100 Users 150 Users 200 Users 250 Users
250+
200
1501
1004

50

0

Figure 20. Concurrent user income

Results show a linear relationship for incoming throughput (concurrent users) and outgoing throughput (page
requests fulfilled per second) as illustrated in Figure 21. Linearity has been also confirmed in resource usage.

The pages response time shown in Figure 22, Figure 23 and Figure 24 below are related to the time spent on
the DWC Servers to reply to the Rational Performance Tester calls and it doesn’t include the time spent on the
browser to process and show data. Moreover, these results have been obtained in a situation for which no
significant scheduling workload was running on the back end (Master Domain Manager, Domain Manager and
Dynamic Domain Manager). If significant scheduling workload is running, the average pages response time
would be worst considering the extra CPU-intensive work running on both the Master Domain Manager and
Database machines.

24

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

B Total Page Attempts - Rate

50 Users 100 Users

20+

pages/s

15+

10

Page Hit Rate
Total Page Hits - Rate

150 Users 200 Users 250 Users 300 Users

0 hours
0:30 1 1:30 2
Figure 21. Pages per second attempted during workload
Average Page Response Time [for Interval]
- H: :

- erule01 20 Manage Event Rules erule01 30 click ok

B crule01 51 close rule details panel
mod01 30 save Job1

50 Users 100 Users

2.04k

erule01 40 next page
erule01 60 select Erule task [l erule01 60 Monitor Event Rules

erule01 72 close trigger view - erule01 80 close monitor event rule

erule01 50 select one rule and view detail
erule01 70 click ok M erule01 71 view first trigger

Login 10.14.45.13 Login 10.14.45.21 Logout B mod01 20 create Job1

150 Users 200 Users 250 Users 300 Users

[RTRTRIEY

0.0

Figure 22. First set of response time trend during increasing workload

25

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

Average Page Response Time [for Interval]
v 1H 3
- mod01 40 create Job2 mod01 41 save Job2 - mod01 50 create JobStream mod01 51 search job1 - mod01 52 add job1
mod01 60 search Job2 - mod01 61 add Job2 mod01 70 save JS - mod02 30 filter JS mod02 40 select JS - mod02 50 edit and save
l mon01 20 monitor workload - mon01 30 DQ @#/DYNAGT4/)S/@.@ +state=SUCC mon01 30 DQ @#/DYNAGT4/)JS/@PEAK@.@ +state=HOLD
B mon01 30 DQ @#/DYNAGT7/)S/@PEAK@.@ +state=HOLD mon01 30 DQ @#/DYNAGT8/JS/@STD@.@ +state=HOLD

50 Users 100 Users 150 Users 200 Users 250 Users 300 Users

w
4{g
5

[
Q
@

0:12 0:24 0:36 0:48 1 1:12 1:24 1:36 1:48 2 2:12 2:24
.\H%__E,_____,__ —— _ _
Figure 23. Second set of response time trend during increasing workload
Average Page Response Time [for Interval]
b 4 1||2 a
Bl non0130DQ @#/DYNAGT8/JS/@STD_EXTRA@.@ +state=HOLD mon01 30 DQ @#/DYNAGT8/JS/C@.@ +state=SUCC
I mon01 30 DQ DYNAGTS#/DYNAGTS/JS/S_STD_EXTRA_9.@ +state=SUCC mon01 31 joblog B mono3 20 planview mon03 30 filter
Bl mon03 40 JS select action mon03 50 open JS view [l Welcome Workload Designer
i 50 Users 100 Users 150 Users 200 Users 250 Users 300 Users
o
25{3
®
2.0
15

pe——— D0 s

0:12 0:24 0:36 0:48 1 142 1:24 1:36 1:48 2 2:12 2:24

0.0

Figure 24. Third set of response time trend during increasing workload

26

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

CPU usage trend

60
50
40
30
20

10

0 50 100 150 200 250 300 350

Concurrent Users
= MDM DWC1 (DWC2) DB

Figure 25. CPU utilization during DWC concurrent users test. The workload is distributed over two
DWC nodes

The above results show an equivalent behavior in terms of throughput and resource utilization behavior with
respect previous releases based on Dash technologies. Moreover, it confirms how the CPU usage is linear
within the increasing number of concurrent users on all the main topological nodes.

It is also interesting to highlight how some performance improvements have been added in the Workload
Scheduler 9.5 FP2 if compared with 9.5 GA and 9.5 FP1 versions, especially for the average response time of
the pages related to the Mon01_951jobs scenario (Monitor Job Scenario with retrieve of job log).

seconds

D I

p p p p g p

00’70))0'70 %o)))O’?o %0 %0 %’70 %’70

7 7 2 7) 7 2 7) 7 > 7 2 7) 7 >
0 - N N 2, N 0, 0y, 2, 7
6,
0’7/,;0 O@ e Q@# %] @, O@# O@% Q @ Q o, /09
% o % = % = o gy
3, 2, 2, L = %, 6,

Y, 4’4@ /D‘?c 4’4@ 4410 4’40 4’4@ By

Sor > > 3 5. .. 75 0y,

Figure 26. Monitor Jobs scenario - average response time comparison between 9.5 FP2 and 9.5 FP1

where the blue bars are related to the 9.5 FP2 run while the light blue bars are related to the 9.5 FP1.

3.4.3 Scheduling Workload for IBM Workload Scheduler on IBM Cloud Private

Starting from 9.5 version, the deployment of Workload Scheduler is available also for IBM Cloud Private.

IBM Cloud Private provides an integrated environment for managing containers that includes the container
orchestrator Kubernetes, a private image repository, a management console, and monitoring frameworks. With

27

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

IBM Cloud Private, it is possible to deploy the IBM Workload Scheduler components as Helm charts to quickly
configure and run them as Docker container applications in a Kubernetes cluster. Moreover, it is possible to
manage the IBM Workload Scheduler components from the IBM Cloud Private dashboard or from the command-
line interface. For further details about the IBM Cloud Private solution refer to online documentation.

The main scope of the current section is to document which are the overall scheduling performance of an IBM
Workload Scheduler installation on IBM Cloud Private solution in a configuration with persistent storage defined
on NFS Server solution.

The IBM Cloud Private environment and topology used for the performance scheduling test is described in the

table below:

ICP Role 0S CPU RAM HDD
Master Node 8 32 GB 500 GB
Proxy Node 2 16 GB 500 GB

Worker Node 1 | UPuntu 18.04.1LTS 6 32 GB 500 GB
Worker Node 2 6 32 GB 500 GB

Table 5. IBM Cloud Private topology used to host IBM Workload Scheduler

Also in this case, all tests described in this section were executed on VMs with virtual CPUs and RAM assigned
exclusively (reserved resources) and the database used for both the Master Domain Manager and the Dynamic
Workload Console components was DB2 v11.1.4.4a installed on a dedicated VM with 8 vCPUs and 32GB RAM.

As persistent volumes for all the product components (Master Domain Manager, Dynamic Workload Console
and Dynamic Agent) the NFS Server solution has been used. To avoid issues during the daily activity, it is highly
suggested:
e to configure the persistent volume to use the version 3 of the NFS server
e to set the local lock parameter to all
e to assure to have a limited network latency between the NFS Server and the IBM Cloud Private
components (in the test environment used, the average network latency between the Worker Nodes
and the NFS Server was less than 0.3 ms The considerations done about the network latency impacts
in a workload scheduler environment with a heavy workload available in the section 3.4.4 of Workload
Scheduler v9.4 Fix Pack 3 performance report are applicable to 9.5.x version too.

The following is an example of .yaml file that shows how the persistent volumes have been configured in this
environment:

kind: PersistentVolume
apiVersion: vl
metadata:
name: <release_ name>-data
labels:
<volname>: <volume_name>
spec:
capacity:
storage: 15Gi
accessModes:
- ReadWriteOnce
mountOptions:
- nisvers=3
- local_lock=all
nfs:
path: <nfs_server_path>
server: <nfs_server IPaddress>

Figure 27. yaml file example for persistent storage

28

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.1/kc_welcome_containers.html
http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/products_platforms_workloadscheduler9.4.0.3_techwhitepaper.pdf
http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/products_platforms_workloadscheduler9.4.0.3_techwhitepaper.pdf

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

In this configuration, a daily plan of around 46000 jobs distributed among tens of dynamic agents was executed.
Note that fault-tolerate agents are not supported by Workload Scheduler installed on IBM Cloud Private.

Throughput Dynamic Agent Scheduling (broker)

250 —

jobs/min

200 - %

i i M
— At Nanfl I N1
{1 . il 5 AUl I
A i T B N f f
— NN
RN
A
— Ny,
A Y,
N L Y,
—] | R e N N
I WL L R
K UL AR NN R A R R R R R .

Figure 28. Dynamic agent daily throughput on ICP environment

The workload represented in Figure 28. Dynamic agent daily throughput on ICP environment is the daily
load of dynamic agent scheduling. In particular, the jobs from 18:00 to 23:00 are standard schedules with “every”
option.

The scheduling throughput represented in this section did not suffer any queuing phenomenon (incoming
and outgoing throughput are equivalent).

From the workload scheduler user perspective that means, again, no substantial delay in the scheduling
of a job when the same job is ready to start (see Figure 29. Average job schedule delay over time on ICP
environment) and no substantial latency in the job and job stream status update from the Dynamic Workload
Console (see Figure 30. Job plan status update delay over time on ICP environment), except for a sporadic
unexpected peak.

29

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

schedule delay

0.50

Delay min.

0.40
0.30 [

0.20 |}

0.0}

o LIS ||
27 02 15:00 27 02 18:00 2702 21:00

Figure 29. Average job schedule delay over time on ICP environment

mirroring delay

2.5

minutes

0.5

| L0 03] bR

| . T 3
2702 15:00 2702 18:00 27 0221:00

0

Figure 30. Job plan status update delay over time on ICP environment

The above results evidence the promptness of Workload Scheduler installed on ICP in the case of a workload
with a peak of around 200 jobs/min with a dynamic scheduling delay of less than 1 minute.

It is interesting to highlight that the dynamic scheduling delay and job plan status update delay start to grow if
the incoming workload is increased, especially during the job submission peak. This behavior depends on the
fact that the Master Domain Manager DATA DIR (where the Workload Scheduler queues and Symphony file
reside) is located in the persistent volume, that is a network-based file system. In this specific configuration, the
network bandwidth and the network latency play a key role in limiting the product throughput capabilities if
compared with an on-prem installation for which the Master Domain Manager DATA DIR is typically defined
on a local attached disk.

30

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

4 Best Practices

4.1 Scheduling

Workload Scheduler software offers many features to perform at best its own objective: orchestrate
scheduling flow activities. The principal way to schedule is to have job streams included in the plan, by
associating it to a run cycle, during the plan generation activity. In addition, the schedule of jobs and job streams
could occur dynamically while the plan is running, using, for example, event rules, conman, start conditions,
and file dependencies. Even if the latter give a higher level of versatility to accomplish different business
scenarios, there are some recommendations that must be considered before planning to adopt them to
orchestrate the scheduler completely in case of a heavy workload.

4.1.1 Scheduling using event rules: Event Processor Throughput

It is possible to have rules that trigger actions like job and job stream submission. These rules could
detect, for example, a job status change or file creation events. In all of these cases, the events are sent to the
event processor queue (cache.dat). In the case of a status change, the consumer is the batchman process,
while in the case of remote file monitoring, the agent itself communicates with the event processor. In all of
these cases, the final submission throughput strictly depends on event processor throughput capability.

The event processor is a single thread process and its processing capacity is proportional to the core
speed and the I/O. For this reason, it cannot scale.

The benchmark was based on 6000 file creation rules, defined for 4 dynamic agents with more than
1.2x1075 files created in one hour. The file creation rate was increased during the test to saturate the event
processor capacity. It is meaningful to compare the event processor capacity in two different architectures (Table
6).

Environment architecture Events per minute
Power7 AIX env 70
VMWare Linux env 390

Table 6. Event processor capacity in terms of maximum throughput (events per minute) comparison

The test was executed during a 240 x 2 jobs/min schedule for dynamic agents and fault tolerant agents.
Figure 31 shows the number of actions that the event processors was able to trigger and, in this case, they are
mapped (one to one) to job submission (see Figure 32). The focus of this section was to demonstrate the event
processor throughput stressed with the file creation rule. It was evaluated that the type of rule does not impact
the throughput. There is a specific scenario, status change event rules, whose throughput is constrained by the
total number of event rules (see IBM Workload Scheduler 9.3.0.1 Capacity Planning Guide) causing enqueuing
on the monbox.

31

http://www.workloadautomation-community.com/uploads/1/0/2/7/102707030/ibmworkloadscheduler9.3.0.1_capacityplanningguide.pdf

nt processor

Figure 31. Number of actions triggered by the eve

_

—

\
—

§§

vz

o
\3

z

NN RN 5 5 G e 0 O O 0 O T 111 &&M

0000000
5555555
6666666

[=] o
(=] '}
™ N

e
e |
\\\\\\\\\\\\\\W\\ m

le scenario

nt ru

ation eve

throughput in the file cre

Domain Manger job submission

amic

Figure 32. Dyn

sidered but also

pacity must be con

t processor ca

ot only the even

utilization in terms of CPU.

While planning this kind of solution, n

its additional resource

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

MDM cpu utilization

50

CPU Utilization in 240 jobs/min (baseline) + 390 jobs/min (from event rules)

a5 ~— ']
X in this workload the same throughputs are present for FTA

40 L\

\

\

\.

35

30

® 25

20 s
Master Domain Manager CPU Utilization ¢ MDM fta + dynamic agent

% eventrule

15

10

0 500 1000 1500 2000 2500 3000
Dynamic job schedule throughput (jpbs/min)

Figure 33. MDM CPU utilization comparison with and without event rule processing

It could be noted that to obtain the same throughput there is an additional CPU consumption of about
30% on the master domain machine.

4.1.2 Scheduling using file dependencies

Workload Scheduler allows the release of dependencies to perform scheduling. These releases could
depend on several objects (jobs, job streams, resources), file dependency is often a useful feature to implement
many business workflows that must be triggered by a file creation. The workload described in 3.4.1 already
includes a component of this type acted against fault tolerant agents. This feature has a different impact on the
performance if used with a dynamic agent. In case of a dynamic agent, the entire mechanism is driven by the
dynamic domain manager that is in charge of the continuous check on the file existence status. The polling
period is driven by the 1ocalopts property present on the Dynamic Domain Manager:

bm check file = 300 (120 seconds is the default).

It defines the frequency with which the dynamic agent is contacted by server about file status. The server
workload throughput is ruled by three parameters:

1. Polling period.

2. Number of file dependencies.

3. Network connection between agents and server.
4. Background Scheduling activities.

In the test environment, (with around network latency 0.1 ms), the file check throughput was strongly
dependent on the scheduling workload. In this context the period between two files checks (in the total file
dependencies list) passes from few hundredths of second (during no scheduling activity) a to tenth of second
(during peak time) increasing the time to slide all the file dependencies every T (bm check file)

In a context like the actual one, it is suggested to tune the T (bm check file) with the following
restriction:

T>N
10

being N the total number of file dependencies.

33

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

This scenario was applied to 2000 jobs scheduled with 2000 different file dependencies, for which
T = bm check file = 300, as shown in the example above. File dependency release was triggered in
three blocks of 400, 800 and 800 files when the system was charged with 1200 jobs/min job submission (see
Figure 34).

Throughput Dynamic Agent Scheduling (broker)

c 1700 — -
— Jobs scheduled after file
_g I~ dependency release N §
@ \ N
! L N §
e [\ \
1600 |— § §
L N N
N N
L N N
\ \
L N N
N N
L N N
1500 — 800 jobs § §
- % §
u . § 800 jobs Q
||) 400 jobs N §
N N N
0 \
1400 |- § § §
- N N N
N N N
| N N N
N N NN
= N N N
1300 |-|- % §§ § §
- § N
H N\ \ N
i \ \ § N
N
N

\
1200 g\\\\\\§\y \ \ S

18h00 18h15

NN

7

N
\ N \\\\\\\\ \\\\\\i NN

RN
18h45 19h00

-

N
(o]
=0
W
o

Figure 34. File dependency releases in a 1200 jobs/min workload as baseline

4.1.3 Scheduling using a start condition

It is also possible to schedule jobs using file detection as a trigger handled a by job mechanism. This is
known as the Start Condition feature: a job called continues to run until a file match is detected.

The capacity of this job stream submission is strictly related to the global schedule capacity. The
advantages include leveraging of job control and monitoring.

4.1.4 Scheduling using conman sbs

The "conman sbs” (or equivalent RESTful calls) command adds a job stream to the plan on the fly. If
the network of the added job stream is significantly complex, both in terms of dependencies and cardinality, it
could cause a general delay in the plan update mechanism. In this scenario, due to scheduling coherence, all
the initial updates pass through the main thread queue (mirrobox.msg) bypassing the benefits of
multithreading. It is extremely difficult to identify the complexity of the network that would cause this kind of
queueing, in any case, the order of magnitude is of several hundreds of jobs in the job streams and internal
and/or external dependencies.

34

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

4.1.5 Scheduling using “every” option

“Every” feature allow to create a new instance of a job stream or of a job in the plan, but while for the
former case the impact is not relevant at run time, because the instances are already included in the plan, the
latter causes multiple internal “sbj” to the same job stream instance that could affect performances especially
in the plan updates.

Itis very important to verify if the “EVERY” option is used with minimal values (few minutes) to avoid to increase
the number of jobs in a job stream (few hundreds of job could impact performances). There are several
methodologies that could help the driving of business need:

o Move EVERY option at job stream level if possible
e Split the Job stream in multiple job stream with “AT xx till xx” (time partitioning)

4.2 Dynamic domain manager table cleanup policy

While the workload increases in terms of the number of jobs executed per day on dynamic agents, the
dynamic domain manager historical tables increase accordingly. Data persistency in this table allows to perform
job log retrieval for archived plans. The following parameters, in the <DATA DIR>/broker/config/
JobDispatcherConfig.properties file, define the cleanup policy:

e SuccessfulJobsMaxAge
e UnsuccessfulJobsMaxAge
e MoveHistoryDataFrequencylnMins

By default, the cleanup thread starts after the time specified by “MoveHistoryDataFrequencyInMins”
lapses since the last occurrence completion or application server boot and removes jobs from the table
accordingly with their status and age. If the job table is large (magnitude 1046 rows), and the number of records
to delete high (magnitude 1075), this activity impacts Workload Schedule performance and throughput
capabilities, as shown by the example below.

During 1200 jobs/min constant workload, the dynamic job cleaning starts deleting almost 7x10"5 rows of
jobs that were 10 days old and in successful state. The delete operation in this case took almost 7 minutes to
complete, causing an intensive /O activity on the database, which impacted overall product throughput
capabilities.

mirroring delay

minutes

0.5

T H
X o

© seeswe00 isesw30 18051900

2o
P

Figure 35. Plan update delay while dynamic job table is being cleaned up

35

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

DB sda busy

20‘1»--
[Tl

gl

0 | ! ! IR i 1 | l L |
18 0517:30 1805 17:45 18 05 18:00 18 0518:15 18 05 18:30 1805

18:45 18 05 19:00

Figure 36. Database Server disk busy while dynamic job table is being cleaned up

Throughput Dynamic Agent Scheduling (broker)

w
=]
=]
=]

jobs/min

2500 |
2000 —
1500

1000

18h00 18h30 19h00

Figure 37. Impact Dynamic Domain Manager throughput capabilities while dynamic job table is being
cleaned up

To avoid the behavior described above, it could be suggested to handle the policy in a more controlled
way. For instance, a specific job could be used to run the cleanup invoking the built-in Workload Scheduler
script:

<INST DIR>/TDWB/bin/movehistorydata.sh -successfulJobsMaxAge 240

The script could be executed on a job scheduled during the appropriate time window, when the daily jobs
execution is low. In this case, the following configuration should be applied in the
<DATA DIR>/broker/config/JobDispatcherConfig.properties:

SuccessfulJobsMaxAge = 360 (15 days)

36

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

MoveHistoryDataFrequencyInMins = 720 (12 hours)

SCHEDULE MDMWS#CLEANUP_DWB_DB
DESCRIPTION "Added by composer."

ON RUNCYCLE RULE1 "FREQ=DAILY;INTERVAL=1"
AT 2345

EU-HWS-LNX47#CLEANUP_DWB_DB

SCRIPTNAME "/opt/IBM/TWA/TDWB/bin/movehistorydata.sh -dbUsr db2user -dbPwd password
-successfulJobsMaxAge 240 -notSuccessfulJobsMaxAge 720"

STREAMLOGON root

DESCRIPTION "This job is used to invoke the script which performs the cleanup of

old dynamic jobs in the database"

TASKTYPE UNIX

RECOVERY STOP

Figure 38. Example of Job Stream that handles the cleanup of Dynamic Domain Manager table entries

5 Recommendations

5.1 CPU capacity

All tests described in this document were executed on virtual CPUs assigned exclusively to VMs
(reserved resources). The Workload Scheduler product can run successfully with different configuration.
However, in the event additional resources are available, or deploying into a virtual environment where over
commitment is possible and resources will be dynamically utilized, the recommended values will permit greater
concurrency and reduce processor latency. While planning the correct CPU sizing, the information provided in
Table 10 could be a reference point to start. The validity of the superposition property that allows us to assume
that the resource usage could be considered as the sum of the Ul (DWC) usage plus the core scheduling usage
was demonstrated.

5.2 Storage

It is not in the scope of this document to suggest a specific storage solution, but the relevance of 1/0
capacity was underlined in previous performance reports in relation to the overall product performance.

The numbers presented in Figure 39 could be used as a reference while planning a solution, because
they are the output of I/O Industry standard benchmark, such as 10zone, and they can be considered key
performance indicators to be used for comparison.

37

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

IOZONE BENCHMARK RESULTS

12849 13024

14000

12865
12000

10000
9212 2922 a668
8305
7738
2000 7732

6228 6457
6000

Throughput (MB/s)

4000

2000

Initial Write Rewrite Read Re-read Reverse Read Stride Read Random Read Mixed Workload Random Write

Test type

Fwrite Fread

Figure 39. 10zone benchmark output run with “-R -1 5 -u 5 -r 4k -s 100m —F file1 ...file5” options

Moreover, we have monitored VMWare ESXi server disk latency over time while Workload Scheduler
daily production plan was running. In average the disk latency was negligible, with some sporadic peaks lower
than 5 ms. Disk latency needs to be monitored constantly because if it increases over the desired threshold of
5 ms, the impacts on product performance would be tangible causing delays on real time scheduling.

5.3 Memory

RAM size is strongly impacted by the JVM heap size settings whose suggested configuration could be
found in the following tables:

Concurrent users
range x DWC node 1-10 10-50 50 - 150
DWC heap size 2 GB 4GB 6 GB

Table 7. Dynamic Workload Console WebSphere Application Server Liberty Base heap configuration

Schedule (jobs/min) 1-50 50 -100 100-200 >200
WS Engine Heap size 2GB 2.5GB 4 GB 6 GB

Table 8. Engine WebSphere Application Server Liberty Base heap configuration

In addition to the above memory requirements, the native memory for the Java™ process and Workload
Scheduler process should be taken into consideration.

5.4 Tunings and settings

The following parameters were tuned during performance tests. These appliances are based on common
performance best practices, also used in previous releases, and tuning activities during the test execution.

38

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

5.4.1 Data Source

As stated at the beginning of this document, starting from version 9.5, IBM Workload Scheduler has
moved from WebSphere Application Server to WebSphere Application Server Liberty Base. As a result, the
utilities known as wastools have been replaced with a number of templates addressing widely used
configurations. You can now configure WebSphere Application Server Liberty Base to work with IBM Workload
Scheduler using the templates provided or define your custom .xml files containing your own configuration
settings.

WebSphere Application Server Liberty Base retrieves the .xml files from the overrides folder

e MDM/BKM/DDM:

<TWA DATA DIR>/usr/servers/engineServer/configDropins/overrides
e DWC: <DWC_DATA DIR>/usr/servers/dwcServer/configDropins/overrides

and applies the configuration settings defined in each file. The file name is irrelevant, because WebSphere
Application Server Liberty Base analyzes each .xml file for its contents.

By default, the datasource settings are specified into the datasource.xml file located in the overrides
folder and these is the list of suggested values for both MDM and DWC nodes:

statementCacheSize="400"
isolationLevel="TRANSACTION_READ COMMITTED"
connectionTimeout="180s"

maxPoolSize="300"

minPoolSize="0"

reapTime="180s"

purgePolicy="EntirePool"

These are the values used to run all the workload scenarios described in this document.

5.4.2 Plan replication in the database (mirroring)

The plan replication feature, also known as mirroring, has been improved release after release by means
of a parallelism (multithreading) and caching. The former is defaulted to 6 threads process with 6 related
mirrorbox_.msg queues. In case of high rates (thousands of jobs status updates per minute) or other
environment configuration (network latency between Master Domain Manager and Database), it could be
advisable to enlarge the number of mirroring threads and queues:

e com.ibm.tws.planner.monitor.subProcessors = 10

Furthermore, the usage of a cache improves performances in the way the plan update processing avoids
querying database for information already handled:

e com.ibm.tws.planner.monitor.cachesize = 70000
e com.ibm.tws.planner.monitor.cachemaxage = 21600000

Since Workload Scheduler version 9.4.0.1, a new caching mechanism was added to accomplish the
stress of scenarios with thousands of file dependency status updates:

e com.ibm.tws.planner.monitor.filecachesize = 40000

These settings can be specified in the file on the Master Domain Manager:
<DATA DIR>/usr/servers/engineServer/resources/properties/TWSConfig.properties.

39

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

5.4.3 Oracle database configuration

The Oracle database configuration that has been used in this context was the default applied by 12c
Enterprise Edition 12.2.0.1.0 installation. It is advisable to enable the Datafile AUTOEXTEND property (ON)
considering that the settings and workload described in this section caused a table space occupancy of about
50 GB.

5.4.4 Comprehensive configuration and tuning

Parameter

Value

Comment

WebSphere Application Server JVM max
heap = min heap

Required: 4096 for [10, 50] users per
node

Suggested: 6144 for [50, 150] users per
node

% WebSphere Application Server JVM options | -Xgcpolicy:gencon :/);:32 gﬁgir;;ett)zr
C
8 gl Y4 of total heap
o size. This
@®
e} parameter
'g should be set to
= 1536m if heap =
g 6144
Y WebSphere Application Server Liberty Base | 300 datasource.xml
a JDBC max Connections
<DATA_DIR>/localopts bm check deadline =0
bm check file = 120
bm check status = 300
bm check untils = 300
batchman bm late every = 0
settings bm look =5
5 bmread = 3
> bm stats = off
= bm verbose = off
= UM -Djava.awt.headless=true - - Xmn 1536m if
= rqument Xdisableexplicitgc -Xgcpolicy:gencon — heap size =
£ arguments | xmn 1024m 6144
e Required: 4096 for [100, 200] jobs/min
L Heap . .
8 WebSphere App"cation Suggested: 6144 for >200 jObS/mln
= Server Liberty Base JDBC Type =4 datasource.xml
Configuration Connection Timeout = 180
Max Connections = 300
Data Source | Min Connections =0
Purge Policy = EntirePool
Reap Time = 180
Statement Cache Size= 400
LOGPRIMARY 200 MB total
transaction log
— LOGFILSIZ 3500 space
S
g KEEPFENCED NO
o MAX_CONNECTIONS AUTOMATIC
MAX_COORDAGENTS AUTOMATIC

40

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

This setting
optimizes query
execution and

STMT_CONC LITERALS reduces CPU
usage
SELF_TUNING_MEM ON
APPL_MEMORY, APPLHEAPSZ, AUTOMATIC
DATABASE_MEMORY, DBHEAP,
STAT HEAP SZ
AUTO_RUNSTATS ON
AUTO_STMT_STATS ON
AUTO_REORG OFF
PAGE_AGE_TRGT_MCR 120
NPAGES | 182000
TWS_PLN_BUFFPOOL
PAGESIZE | 4096
NPAGES | 500
TWS_BUFFPOOL_TEMP
PAGESIZE | 16384
NPAGES | 50000
TWS_BUFFPOOL
PAGESIZE | 8192

Dynamical Workload Broker

<DATA_DIR>/broker/config/J
obDispatcherConfig.properti

Historical data

MoveHistoryDataFrequencyInMins=720

SuccessfulJobsMaxAge = 360

management
es
<DATA DIR>/broker/config/ MaxAllocsPerTimeSlot = 1000
ResourceAdvisorConfig.prop TimeSlotLength = 10
erties MaxAllocsInCache = 50000
com.ibm.tws.planner.monitor.subProcessors = 10
<_DATA_DIR>/usr/servers/en Plan_ com.ibm.tws.planner.monitor.filecachesize= 40000
gineServer/resources/propert | replication — - - — ——
ies/TWSConfig.properties | configuration | “°"- 0 =s-pranner.monitor. cachesize =

com.ibm.tws.planner.monitor.

cachemaxage = 21600000

Table 9. Main configurations and tunings

6 Capacity Plan Examples

In the context of this document, the number of key parameters used to identify the workload was kept to

a minimum:

1. Number of concurrent users.
2. Number of jobs to be scheduled.
3. Percentage of dynamic jobs to schedule.

41

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

With the above input, it is possible to forecast the resources needed to host the version 9.5.0.x product.
Internal fit functions were used to model the workload and resource usage relationship. A 65% CPU usage was
the threshold considered before requesting additional core.

In this section, some examples of capacity planning are reported. Remember that all the requirements
are related to Linux X86 VM in a VMWare virtualization with reserved resources; nevertheless, this information
could be used as a reference point for different platform architectures.

Number of virtual .
NODE VCPU cores RAM Capacity (GB)

10K jobs (50% FTA +50% DYN) per day (8 jobs/min), 10 concurrent users

WS Engine, RDBMS,

DWC 4 16

1 Node

250K jobs (50% FTA +50% DYN) per day (175 jobs/min), 50 concurrent users

WS Engine, DWC 4 16

2 Nodes

RDBMS 4 16

500K jobs (50% FTA +50% DYN) per day (350 jobs/min), 100+ concurrent users

|

| WS-Engine || 8 || 32 |

3 Nodes | RDBMS | 8 | 32 |
| DWC | 5 | 20 |

Table 10. Capacity planning samples

42

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

7 Notices

This information was developed for products and services offered in the U.S.A.

HCL may not offer the products, services, or features discussed in this document in other countries.
Consult your local HCL representative for information on the products and services currently available in your
area. Any reference to an HCL product, program, or service is not intended to state or imply that only that HCL
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any HCL intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-HCL product, program, or service.

HCL may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this documentdoes notgrantyou any license to these patents. You can send license
inquiries, in writing, to HCL TECHNOLOGIES LIMITED email: products-info@hcl.com

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: HCL TECHNOLOGIES LIMITED PROVIDES THIS PUBLICATION
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. HCL may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-HCL Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this HCL product and use of those Web sites is at your own risk.

HCL may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should
contact HCL TECHNOLOGIES LIMITED email: products-info@hcl.com

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by HCL under terms of the HCL License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-HCL products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. HCL has not tested those products and cannot

43

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

confirm the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions
on the capabilities of non-HCL products should be addressed to the suppliers of those products.

All statements regarding HCL's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All HCL prices shown are HCL's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

7.1 Trademarks

HCL, and other HCL graphics, logos, and service names including "hcltech.com" are trademarks of HCL.
Except as specifically permitted herein, these Trademarks may not be used without the prior written permission
from HCL. All other trademarks not owned by HCL that appear on this website are the property of their
respective owners, who may or may not be affiliated with, connected to, or sponsored by HCL.

IBM and other IBM graphics, logos, products and services are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both. A current list of IBM
trademarks is available on the Web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Oracle database, Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Oracle and/or its affiliates.

VMware's and all VMWare trademarks and logos are trademarks or registered trademarks in the United
States and certain other countries.

Dell, EMC, DellEMC and other trademarks are trademarks of Dell Inc. or its subsidiaries in the United
States and certain other countries.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo and JBoss are registered trademarks of Red
Hat, Inc. in the U.S. and other countries. Linux is a registered trademark of Linus Torvalds. All other trademarks
are the property of their respective owners.

Mozilla and all Mozilla trademarks and logos are trademarks or registered trademarks in the United States
and certain other countries.

Google LLC All rights reserved. Google and the Google Logo are registered trademarks of Google LLC.

NETAPP, the NETAPP logo, and the marks listed at www.netapp.com/TM are trademarks of NetApp, Inc.

44

WORKLOAD SCHEDULER 9.5.0.2 PERFORMANCE REPORT | May 2020

hello there! | am an Ideapreneur. i believe that sustainable business outcomes are driven by relationships nurtured through
values like trust, transparency and flexibility. i respect the contract, but believe in going beyond through collaboration, applied
innovation and new generation partnership models that put your interest above everything else. Right now 150,000 ideapreneurs
are in a relationship Beyond the Contract™ with 500+ customers in 46 countries. how can | help you?

i

MOI_ ‘-‘L' ’)
www.hcltech.com " BEYOND THE CONTRACT H‘ .

45

